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FOREWORD

The papers presented here have been derived primarily from speakers’ summaries of talks presented at the
Flight Mechanics/Estimation Theory Symposium held May 10-11, 1988 at Goddard Space Flight Center.
Papers included in this document are presented as received from the authors with little or no editing.
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A GENERAL MODEL FOR
ATTITUDE DETERMINATION ERROR ANALYSIS

F. Landis Markley
Ed Seidewitz
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Mark Nicholson
Computer Sciences Corporation
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ABSTRACT

This paper gives an overview of a comprehensive approach to filter and dynamics
modeling for attitude determination error analysis. The models presented include
both batch least-squares and sequential attitude estimation processes for both
spin-stabilized and three-axis stabilized spacecraft. The discussion includes a brief
description of a dynamics model of strapdown gyros, but it does not cover other
sensor models. Model parameters can be chosen to be solve-for parameters, which
are assumed to be estimated as part of the determination process, or consider
parameters, which are assumed to have errors but not to be estimated. The only
restriction on this choice is that the time evolution of the consider parameters must
not depend on any of the solve-for parameters. The result of an error analysis is an
indication of the contributions of the various error sources to the uncertainties in the
determination of the spacecraft solve-for parameters. The model presented in this
paper gives the uncertainty due to errors in the a priori estimates of the solve-for
parameters, the uncertainty due to measurement noise, the uncertainty due to
dynamic noise (also known as process noise or plant noise), the uncertainty due to
the consider parameters, and the overall uncertainty due to all these sources of
error.
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A General Model for Attitude Determination Error Analysis

1. INTRODUCTION

Spacecraft attitude determination involves estimating the orientation of a spacecraft relative to inertial
space, based on measurements from onboard sensors. Attitude determination error analysis is the
computation of the attitude determination accuracy obtainable with sensor data of prescribed error
characteristics, without processing real or simulated sensor data. This analysis takes into account the
presence of certain errors in modeling the sensors and the attitude motion of the spacecraft [Wertz].

This paper gives an overview of a comprehensive approach to filter and dynamics modeling for attitude
determination error analysis. The models presented include both batch least-squares and sequential attitude
estimation processes for both spin-stabilized and three-axis stabilized spacecraft. Model parameters can be
chosen to be solve-for parameters, which are assumed to be estimated as part of the determination process,
or consider parameters, which are assumed to have errors but not to be estimated. The only restriction on
this choice is that the time evolution of the consider parameters must not depend on any of the solve-for
parameters. Great freedom is also allowed in specifying sensor types and measurement scheduling.

The result of an error analysis is an indication of the contributions of the various error sources to the
uncertainties in the determination of the spacecraft solve-for parameters. The model presented in this paper
gives the uncertainty due to errors in the a priori estimates of the solve-for parameters, the uncertainty due
to measurement noise, the uncertainty due to dynamic noise (also known as process noise or plant noise),
the uncertainty due to the consider parameters, and the overall uncertainty due to all these sources of error.
This approach was developed as part of the mathematical specification of algorithms for the
computer-based Attitude Determination Error Analysis System (ADEAS) [Nicholson].

2. DYNAMICS MODEL
The state vector x is an N-dimensional vector of parameters that completely characterizes the system.

For spacecraft attitude determination, the state vector includes spacecraft attitude parameters and sensor
calibration parameters. The state vector is assumed to evolve in time according to the dynamics model

X(1) = f(x(1), 1) + u(s) 2-1)
where the dynamic noise u(?) is a Gaussian white noise process with mean and covariance given by
Elu(t)] =0 and  Efu(nul(r)] =Q &r-1) 2-2)

with EJ...] denoting the expectation value. In this equation Q is the NXN dynamic noise spectral density

matrix and &t - t') denotes the Dirac delta, or unit impulse, function. The state vector includes all the
parameters needed to compute x, even though some of these parameters may have zero derivative.

The true value of the state vector is never exactly known, but can only be estimated. The state estimate
vector x*(t) evolves in time according to

X*(1) = f(x*(1), 1) . (2-3)
The state error vector, given by

Ax(1) = x(1) - x*(1) (2-4)
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is assumed to always remain small, so linear error analysis techniques can be used. Then, to first order,

Ax(t) = X(1) - X*(1t) = flx(1), 1) - f(x*(1), 1) + u(t) = (f1dx)(t) Ax(t) + u(t). (2-5)
Integrating this formally gives

Ax(t) = (1, ') Ax(t') + y(t, t') (2-6)
where the state transition matrix dXt, t') is the solution of the differential equation

a1, 1) = (f1x)(r) 1, ¥) (2-72)
with the initial condition

dXt', t') =1y = the NxN identity matrix (2-7b)
and the random excitation vector yt, t’) is given by the integral

Wt 1) = ft o, ) uge) v, 2-8)
It follows from equations (2-7) and (2-8) that the transition matrix obeys the group property

Nt 1) =N, 1") 1", 1) (2-9)
and that the random excitation vector obeys the relation

Wit t) =D t") yit", t') + y(t, 1) . (2-10)

Equations (2-2) and (2-8) give the relationship

E[yit, t')yI(r", 1)) =0 fort2t" 2t (2-11)
The estimation computations require the random excitation covariance matrix

D(t, )= E[ys, O)yT(t, 1)) = /; ,tcb(t, ') Q DI(t, ") dr”, (2-12)
which equations (2-10) and (2-11) show to obey the relation

D(t, ') = &1, t") D(t", t') DI(1,t") + D(1, ") . (2-13)
2.1 Spin-Stabilized Spacecraft Dynamics Model

For spin-stabilized spacecraft, the attitude matrix Agj(t) which transforms vectors from an inertial
frame 7 to the spacecraft body frame B is given as the product

ABJ(t)=Ap(t) ALI() (2-14)

where the subscript L denotes an intermediate frame in which the total spacecraft angular momentum
vector L is oriented along the positive z-axis. The matrix Ay j(z) is given in terms of the right ascension
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ogt) and declination &) of the angular momentum vector as

Apg(t) =Ax(m2 - §) Az(ax) (2-15)
where A;(6) denotes a rotation by angle 6 about axis i. The matrix Agy (¢) is parameterized by a 3-1-3
Euler axis sequence as

ABL(1) = A3(y) A1(6) A3(9) . (2-16)
For torque-free motion of an axially-symmetric rigid body aft), &), and 6(z) are constant, and

1) = axy(1) (2-17a)
(1) = (1), (2-17b)

where y(t) and (1) are the inertial nutation rate and body nutation rate, respectively [Wertz].
The state vector x(t) for the spin-stabilized case is

x(1) = [oqt), 1), ¢(1), 6(1), yt), wp(t), Wp(t), X ()17, (2-18)

where x,,, is a y-dimensional vector of measurement parameters depending on the sensor complement of

the spacecraft being modeled. We assume that the measurement parameters are constant and that any
deviations of the dynamics from torque-free motion of an axially symmetric rigid body can be

approximated by independent white noise processes uof?), u§(r), ug(t), ug(t), uydt), ur(z), and up(z). The
equations of motion for spin-stabilized spacecraft give the dynamics model

(000 0 0 0 0 0 0] " uglt) ]
0.0 0 0 0 0 0 0 ugt)
0 0 0 0 0 1 0 0, ugt)

=0 0 0 0 0 0 0 047 | xt) + | ugt) (2-19)

0 0 0 0 0 0 1 o0 Uylt)
0.0 0 0 0 0 0 0, u(1)
00 0 0 0 0 0 0 Up(t)
Ou Op Op Ou Op Op Op Opxy Ou

where 0# is a p-dimensional vector of zeros and 0# X is a pxy matrix of zeros. Since the dynamics

model for spin-stabilized spacecraft is linear in the state vector, the state error vector Ax(z) obeys an
equation of the same form as equation (2-19). Thus the state transition matrix, as defined by equation
(2-7), is
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r~— —

1 0 0 0 0 0 0 04
01 0 0 0 0 0 0,
0 0 1 0 0 A 0 047
)= 0 0 0 1 0 0 0 047 (2-20)
0 0 0 0 1 0 4 0,7
0 0 0 0 0 I 0 0
00 0 0 0 0 1 0,7
_o# Op 0y 0y Oy 0y Oy I#J

where

At =t-1. (2-21)

The inverse of the state transition matrix is

- o

ol r) = T (2-22)

S O N © O O
12
[
-
XD
w®
~

S © © © ~ ©
S © © ~ © ©
S N~ © © © ©
t
~ © O B O o
-
S © © ©
S
®
iﬂ

T
0 0y
ooooozoyT

S S O O O O~

Oy Oy Oy Oy Oy Oy Oy Iy

b o

and the random excitation covariance matrix is

e

O 0 0 0 0 0 0 0,7
0 Q5 0 0 0 0 0 0,7
0 0 Qp+(1/3)Qr(A)? 0 0 (1/2)QrAt 0 0,7
Dit,t)=|10 0 0 o]’} 0 0 0 0,7 | Ar, (2-23)
0 0 0 0 Qu+(I30p(AR 0 (12)QpAr 047
0 0 (1720 0 0 Or 0 0,
0 0 0 0 (172)Qpa 0 0 0,7
| Ou Op Oy Ou Ou O Ou Opxu |
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where Q  is defined by

Efugft)ugft')] = Qg &t- 1) (2:24)
with similar relations for 0§, Q¢, 0o QW’ QOr,and Qp.
2.2 Three-Axis Stabilized Spacecraft Dynamics Model

For three-axis stabilized spacecraft, the attitude matrix Apj(t) is given as the product
Ap(t) = ABR(t) ARI(?) (2-25)

where the subscript R denotes a reference frame, which can be, for example, Earth-pointing,
Sun-pointing, or inertial. The inertial-to-reference matrix AR/(?) for any reference system is computed

from the reference vectors defining that system. The nominal spacecraft attitude with respect to the
reference frame evolves over time according to

ApR(t) =- @gR(t) ABR(1) , (2:26)

where GgR(t) is the 3x3 antisymmetric matrix

0 -[wpRr()];  [wBR(1)]y
@pr()= | [wBR(Y)I; 0 - [@BR()]x 2-27)
| -[ogr(ly  [@BR(MIx 0 ]

defined from the column vector awpgp(t) containing the components in the body frame of the spacecraft

angular velocity relative to the reference frame. The nominal attitude profile is used for determining
measurement geometry, sensor line-of-sight occultation, and related effects.

The attitude error is defined in terms of a three-component attitude error vector AB(t), whose
components are the small rotations about each of the spacecraft body axes that would align the true body
axes with the estimates of these axes. In terms of the true attitude AgR(t) relative to the reference frame

and the estimate Agp*(?) of this attitude,

ABR*(1) = (I3 + AB(1)] ABR(1), (2-28)

where I3 is the 3x3 identity matrix and the antisymmetric matrix A‘Gv(t) is defined similarly to equation
(2-27).

The true attitude relative to inertial space evolves according to
ABI(1) =- GBI(1) ABI(Y) , (2-29)

where wpJ() is the column vector of components in the body frame of the spacecraft angular velocity
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relative to inertial space. Similarly, the estimated attitude relative to inertial space evolves according to

ABpH(1) =- @p*(1) Agr*(1) , (2-30)

where wpr*(t) is the column vector of estimates of wp (t). These equations form the basis of the attitude
error propagation, since this is assumed to be based on information obtained from gyros, which provide
the estimates wpg*(t) of the angular rates relative to inertial space. The attitude estimate relative to inertial
space is related to the estimate relative to the reference frame by the analog of equation (2-25):

Apr*(t) = ABR*(t) ARI(1). (2-31)
Then from equations (2-25) - (2-31) we have
d(AB)/dt = d(AgR* ApRT)/dt = d(App* AgjTids = Agp (e) AgyT(1) + Agr*(t) ApyT(r)
= - Gp*(1) Apr*(t) ApT(1) + Apr(1) Ap(1) Gpy (1)
= - Q1) [13 + AX0)] + [I3 + AB(1)] Tgy(1). (2-32)
We now define the angular velocity measurement error vector by
Awp(t) = wpr*(t) - wpj(t) (2-33)
and assume that its components are small. Then, to first order in Awgy and A8
d(AB)/ds = - Bgy(t) A1) + A1) Bpy(1) - ABp(0), (2-34)
which is, in vector form
AB(1) = - Bpy(1) A6(1) - Awpy(t) | (2-35)

The angular velocity measurement errors arise from gyro errors, and a general model for these errors
gives [Nicholson]

Awgj(t) = Ab(t) + SAt) Ak - Bpy(t) Ae - ug(t) (2-36)

where Ab(t) is a vector of first-order Markov processes representing the gyro drift rate biases, Ak is a

vector of constant gyro scale factor errors, Ae is a vector of constant gyro misalignment errors, ugt) is a
vector of white-noise processes representing the gyro drift rate noise, and

Q1) = diag [wp)T(1) ], (2-37)

which means that £(z) is the diagonal matrix with the components of wpg () as the diagonal elements.
The drift rate bias vector is assumed to evolve according to

Ab(t) = - Ab(1)/T+ up(t), (2-38)
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where 7 is the correlation time of the Markov processes and up(t) is a vector of white-noise processes

representing the gyro drift rate ramp noise. The white noise processes ug(t) and up(t) have means and
covariances given by

Efugt)] =0, Elug(tiugh(t)] = Qg &t - t') (2-39a)
E[up(t)] =0, E[up(t)upl(t)] = Qp &t - 1) (2-39b)
and Elug( t)ubT( t')] =0, (2-39¢)

where Qg and Qp, are 3x3 symmetric, non-negative-definite matrices that are assumed to be constant. This

gyro error model is a generalization of the model in [Lefferts] to include scale factor and misalignment
eITorsS.

The state error vector for the three-axis stabilized case 1s

Ax(t) = [A07(1), AbT (1), AKT, A€T, Ax,, T(eNT . (2—-40)

where Ax,, is the error in a g-dimensional vector of measurement parameters depending on the sensor

complement of the spacecraft being modeled, as in the spin-stabilized case. The time evolution of this
vector is given, using the above models, by

p— — o —-—

-apy(1) - 13 -y Gpi(t) O3xy ug(t)
03x3  -13/t  03x3  03x3  O3xu up(t)
Ax(r) =| 03x3 033 033 03x3 O3xu | Ax(1) + | 03 (2-41)
03x3  03x3  03x3  O03x3  O3xu 03
L_Ouxj’ Oux3  Oux3  Oux3 Ouxu 1 _0# |

where 03 is a 3-dimensional vector of zeros and Oy is a jxk matrix of zeros. The state transition matrix,
as defined by equation (2-7) is then

i Dog(t, ') Pgp(t, 1) Pgi(t, 1) 13- Pgglt, 1) 03 XU ]
03x3 Dpp(t, 1) 03x3 03x3 03xu
1, 1)= | 03x3 03x3 I3 03x3 03 xu (2-42)
03x3 03x3 03x3 I3 03xu
Oux3 Oux3 Oux3 Oux3 Iy

10
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where

Dgp(t, t') = - _/;t Dot t") exp[- (" - t')/T] dt” (2-43a)
t

Doy(t, ') =- _/; , Dot t") L(t") dt” (2-43b)

Dpp(t, ') = I3 exp[- (- 1)IT]. (2-43c)

The artitude error propagation matrix @gg(t, t') is given by the differential equation
Dog(t, 1) = - DpI(t) Poe(t, 1) (2-442)
with the initial condition
Dgp(t', t') =13 . (2-44b)

The form of equation (2-44a) is identical to that of equation (2-29) for the attitude matrix Agj(z). Thus

D1, ') must also act as a transition matrix for the attitude:

ABI(t) = Dgg(t, t') ABI(1'), (2-45)
or
Dot ) = Apy(r) Ag[T(1). (2-46)

Equations (2-43) reduce to quadrature after substitution of equation (2-46), where Agj(t) is given in

terms of the nominal attitude profile by equation (2-25). The matrix £(t), which is needed to evaluate
equation (2-43b), is also given in terms of the nominal profile by the following argument. The integral is

broken up into time steps of length Az, chosen to keep integration errors below a specified tolerance
[Nicholson]. The contribution of the interval between ¢ and ¢ + At requires the matrix 2 Atr, where Q
denotes the average value of £X(z) over the time interval. This matrix has the same elements, rearranged by
row and column, as the matrix 53 [ At, where wprdenotes the time average of wpg(t) over the interval.
This is given in terms of the result of integrating equation (2-29) over the interval, and ignoring terms of
higher than first order in At ; |

ABI(t+ At)= [ I3~ &gy At ] Ap[(1), (2-47)
or
dprat = (1/2)[Ag(t) Agl(t + At) - Agy(t + At) Agj(1)]. (2-48)

11
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Since the submatrix @gg(t, t') is seen from equation (2-46) to be orthogonal, the inverse of the state

transition matrix is given by

Doo” - Deg" PepPrp! - Pog” Pk
03x3 Dpp!
Q)= | 033 03x3
03x3 03x3
0ux3 Oux3

03x3 03x3
I3 03x3
03x3 I3

Oux3 Oux3

13 - QQOT 03)(#

03xu
03x,u
03x,u
Iy

-

(2-49)

-

where the time arguments of the submatrices, which have been omitted for compactness, are the same as

the arguments of the full matrix, and

Dppl(r, 1) =13 exp[(t - 1)/ 7],
The random excitation covariance matrix is

Dgg(t,t) Dgp(t, 1) 033
Dgpl(r, 1) Dpp(t,t)  03x3

D, t) = | 03x3 03x3 03x3
03x3 03x3 03x3
Oux3 Oux3 Ouxs

where

03x3
03x3
03x3
03x3
Opux3

03 Xu
03 xu
03 XU
03 XU
Opuxu

t
Dog(t, 1) = f: " [Dpp(t, 1) Qg PegT(t, 1) + Dep(t, 1) Op PepT(1, 1")] dr”

4
Dep(t, t') = /t " Dgp(t, ") Op Dpp(t, 1) di”
r t " ” ”
Dpplt, t)=/;, Dpp(t, ") Op Ppp(t, t”) dr”.

with Qg and Qp given by equations (2-39).

12
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3. ESTIMATION AND COVARIANCE ANALYSIS

A filter produces state estimates based on information obtained from measurements made at discrete
times. Let y; be an n;-dimensional vector of measurement values obtained at time ;. Measurements are

related to the state vector by the following measurement model:
yi = 8i(x(t)) + v (3-1)

where V; is a Gaussian white noise process with mean and covariance given by

E[v]=0 (3-2a)
E[vvI] =R; (3-2b)
E[vyT]=0 fori#]. (3-2¢)

The functions g; are assumed to be known functions of imprecisely known arguments. Therefore, it is
possible to compute predicted measurement values by

yi* = gi(x*(1;)) (3-3)
The measurement residual between the actual and computed measurements is theft
Ay; = y;i- ¥ = 8i(x(1) - gi(x*(1;)) + v; =G; Ax(t;) + v, (3-4)
where G; = dg;/ox(1;) (3-5)
and Ax is assumed to be small.
It is usually not necessary to estimate all of the state parameters. Therefore, a filter may produce
estimates for a set of solve-for parameters which are a subset of the state parameters. The filter does not

account for the remaining state parameters, which are called consider parameters since they contain
uncertainties that are considered in the error analysis. The state error vector is thus partitioned as follows:

As(t)
Ax(t) = (3-6)
Ac(t)
where As(1) = solve-for parameter error vector

Ac(t) = consider parameter error vector.

The random excitation vector, the state transition matrix and the random excitation covariance matrix have
similar partitionings:

Vs(t, 1)

Wt 1) = (3-7a)
Ve(t, 1)

13
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Deo(t, 1) Dy (1, t')
1 t) = (3-7b)
0 Do(t, 1)

and

D1, ') Dg.(t, 1)
D, 1) = . (3-7¢)
D (1, 1) Dec(t, 1)

The error propagation equation (2-6) can then be rewritten as

As(t) = D (1, U)As(t) + D (1, 1')Ac(t) + y(t, 1) (3-8)

Ac(t) = @ (1, 1')Ac(t') + W (1, 1) . (3-9)
The partitioning used in equations (3-6) to (3-9) is not the same as the partitioning of the state vector
used in section 2. The two partitionings are related by row and column interchanges, depending on the
selection of solve-for and consider parameters. The zero in the state transition matrix in equation (3-7b)
reflects an assumption that the time evolution of the consider parameters does not depend on any of the
solve-for parameters. This restriction assures that solve-for parameter errors do not induce additional
consider parameter errors during propagation. In the case of the three-axis stabilized case discussed in

section 2.2 this means that it is impossible to solve for any gyro parameters without also solving for the
attitude. Work is continuing on removing this restriction from the model.

There are four basic contributions to the total solve-for parameter error:
As(t) = Asg(t) + Asy(t) + Asp(1) + Asy(t) (3-10)
where Asg(t) = the error at time ¢ due to an a priori error at the epoch time 1,
As,(t) = the error due to measurement noise

As(t) = the error at time ¢ due to consider parameter errors at time z,,

Asy,(t) = the error due to dynamic noise.

Substituting equation (3-10) into equation (3-8), and using equation (3-9), gives

Asy(t) = DL, 1)Asy(1) (3-11a)
Asy(t) = Dy (1, U)Asp(t) (3-11b)
Asp(t) = Dy(1, 1')As (1) + Dy (1, 1) D (1, 15)Ac(ty) (3-11¢)
Asy(1) = Dy i(t, 1')Asy (1) + Dy o1, P)Y (T, 15) + W(LE). (3-114d)
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The function of a full estimation system is to determine an estimate s*(z) given measurements y;.

Error analysis, however, does not require the actual computation of an estimate, but determines how good
an estimate would be if it were produced in a given situation. This is done by computing the estimation
covariance matrix defined by

P(t) = E[As(1)AsT(1)]. (3-12)

The covariance matrix P(t) provides a statistical measure of how good an estimate could be produced at
time 7 of a given scenario. We assume that at the epoch time t,, the solve for error As(z,) and the consider

error Ac(t,) are uncorrelated. If all the various error sources are also initially uncorrelated, then by

equations (3-11) they remain uncorrelated at all times. Thus, substituting equation (3-10) into equation
(3-12) gives

P(t) = Py(t) + Py(t) + Po(t) + Py(t) (3-13)
where Py(t)= E[Asy(t)As 1(1)] (3-14a)
P (1) = E[As,(t)As,T(1)] (3-14b)
P (1) = E[Aso(t)As T(1)] (3-14c)
Py,(1) = E[ As,(1)As,T(1)] . (3-14d)

In addition to providing a solve-for parameter estimate, an estimation system will generally also
compute an estimate P* of the estimation covariance P. Since the true a priori error and noise covariance
matrices may not be known, the estimation system must use assumed values for the covariances of these
error sources. Further, the estimation filter, by definition, does not account for consider parameter errors.
Therefore, there are three basic contributions to P*;

P*(t) = Pa*(t) + P*(t) + Py*(t) (3-15)
where P ,*(t) = the covariance contribution at time ¢ induced by the assumed a priori covariance

P,*(t) = the covariance contribution induced by the assumed measurement noise covariance

P,*(t) = the covariance contribution induced by the assumed dynamic noise covariance

If the assumed covariances do not reflect the actual values (the filter is mistuned) then there will be some
covariance contribution due to residual a priori error, measurement noise and dynamic noise. Thus

P(t) = P*(t) + P(t) + AP 4(t) + APy(t) + AP (1) (3-16)
where AP (1) = Py(t) - Pg*(1) ' (3-17a)

APy(t) = Py(t) - Py*(1) (3-17b)

AP (1) = Py(t) - P, X(2) . (3-17¢)

Note that these matrices may not be non-negative-definite.
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3.1 Batch Filter Covariance Analysis

A batch filter produces an estimate s*(z,) at an epoch time ¢,, based on a single batch of measurements
y that may have been made at various times. Thus

Y1 yr* Ay
e y* cee and AyE e . (3'18)
Ym Ym™ Ay,

A ]
1]

The batch filter produces an estimate s*(t,,) that gives the computed measurement y* which minimizes the
cost function

V= AyTWAy + As,*TW ,As ) * (3-19)
As, = 8(ty) - 5p* (3-20b)
where W = positive-definite symmetric measurement weight matrix

So* = a priori estimate of s(z,)

W, = non-negative-definite symmetric a priori weight matrix.

Since the batch filter determines s*(z,), it is necessary to relate Ay to As(z,). Substituting equation
(2-6) into equation (3-4), and using the partitioning of equations (3-6) and (3-7b), gives

Ay; = G; [Py, 1,)Ax(1,) + Y(1;, 1) + V; = F; As(1,) + C; Ac(1y) + U + v (3-21)
where
Dys(1;, 10) Dsc(;, 10)
FiEGi , CiEGi and UiEGi (4, to) - (3-22)
Then Ay = FAs(ty) + Ae (3-23)
where Ae=CAc(ty) + U+ v (3-24a)
and
F;
F=| - (3-24b)
Fm

with C, U and v defined similarly from C;, U; and v;.
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Substituting equations (3-20a) and (3-23) into equation (3-19) for the cost function gives
V = AsT(t,) (W, + FTWF) As(t,) + AsI(t,) (FTWAe - W,4s,,)
+ (AeTWF - As,TW,) As(1,) + AeTWAe + As,TW 45,
= [As(ty) + Wy I(FTWAe - W, As,)]T Wy, [As(ty) + Wyl (FTW Ae - W, A4s,)]
- (FTWAe - W, As,)T Wy! (FTWAe - WyAs,) + AeTWAe + As,TW,As,  (3-25)
where W,=W, + FTWF . (3-26)

The matrix Wy, is known as the normal matrix. The final equality in equation (3-25) is valid as long as W),

is nonsingular. The singularity (or ill-conditioning) of the normal matrix indicates a lack of observability
of the solve-for parameters from the measurements y.

If W, is nonsingular, then it is clear from the form of equation (3-25) that V is minimized when

As(ty) = - Wyl (FTWAe - W, As,)
= - Wyl {FTW [CAc(t,) + U + V] - WyAs,}

where Asgty) = WylW, As,, (3-282)
Asy(ty) =- W, IFTWy (3-28b)
Asg(ty) = - Wy AFTWC Ac(t,y) (3-28¢)
Asy(ty) = - W, IFTWU . (3-28d)

The estimate s*(z,,) at the epoch time ¢, may be propagated to any other time using equation (2-3). The
solve-for parameter errors at these other times are given by equations (3-11), with #' = ¢, and with
equations (3-28) as initial conditions.

Using equations (3-11a) and (3-28a) in equation (3-14a) gives the a priori error induced contribution to
the solve-for covariance:

Py(t) = D(t, 15) Pylty) D1, 1) (3-29)
where Pg(tp) = WylW,P W, Wy ! (3-30)
with P,=E[As,As5,7] . (3-31)

Using equations (3-11b) and (3-28b) in equation (3-14b) gives the measurement noise induced
contribution to the solve-for covariance:
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Py(1) = @((1, 15) Pp(ty) P (1, 15) (3-32)
where P,(t,) = W, IFTWRWFW -1 (3-33)
with R=E[v] . (3-34)

Using equations (3-11c) and (3-28c) in equation (3-14c) gives the consider parameter induced contribution
to the solve-for covariance:

P(t) = (3s/dc)(t) E[ Ac(t,)AcT(1,)] (Os/dc)!(t) (3-35)

where (3s/0c)(t) = - Dy (t, 15) Wy IFTWC + Dy (1, 1,) . (3-36)

The computation of the dynamic noise contribution P, is complicated by the fact that the U in equation

(3-284d) is correlated with the (s, 1) term introduced by the propagation equation (3-11d). Using
equations (3-11d) and (3-28d) in equation (3-14d) gives

Py(t) = Du(t, 15) Pylty) DTt 1,) - Dylt, 1) W IFTW E[UWT(1, 1,)]
- E[y(t, to)UT] WEW - 1 T(1, 1) + Dyt 1) (3-37)

where Py (t,) = Wy IFTWE[UUTJWFW -1 . (3-38)

From equation (3-22) we have

GiD(t},15)GT -+ GiD'(1, ty)Gpl
E[UUT] = (3-39a)
GuD(t, t1)G1T -+ GpuD(ty, 1o)G T
G ID’S( t, t)
E[Uys1(1, 15)] = (3-39b)
G D s(t> 1)
where D'(y;, 1;) = E[y(t;, to)¥" (8}, 15)] = [D's(1;, ), D'e(t;, )]
= (1, 1;) D(1;, 1p) = V1;, 1) D1(1,1,) D(1;, 1) for g; 21;
= D(t;, to) D1, 1)) = [ (1}, 1) @18, 15) D(1;, 1,)]T  for g 21;. (3-40)

The last equality on the first line of equation (3-40) indicates a partitioning of D(z;, ¢;) into submatrices
D’y(t;, t;) and D'c(1;, 1), and the equalities on the last two lines follow from equations (2-9) to (2-11).

18



A General Model for Attitude Determination Error Analysis

A minimum variance batch estimator produces solve-for parameter estimates with minium covariance
due to noise sources known to the filter [Sorenson, Wertz]. The weights for such a filter are chosen as
follows:

W=R*Il and W,=P,*I (3-41)
where R* = an assumed value for the measurement noise covariance
Py* = an assumed value for the a priori error covariance.

The estimated covariance at the epoch time P*(z,) is obtained by substituting equations (3-41) into
equations (3-30) and (3-33), and assuming that R = R* and P, = P,*, giving

P¥(1,) = Pg*(ty) + Py¥(ty) = Wy l(Wy + FIWF)W 1 = W1 (3-42)
with Pa¥(t,) = Wy IW W1 (3-43a)
Py¥(ty) = Wy lFTWFW -1, (3-43b)

Note that the P,*(1,) = 0 because the batch filter does not account for dynamic noise at all. The covariance
estimate is propagated to other times by using equations (3-29) and (3-32), which give

P*(1) = Dy (1, 1) PX(1,) D I(1, 1) . (3-44)

Using equations (3-30), (3-33), (3-41) and (3-43) in equations (3-17) gives the residual covariance
contributions:

APy(ty) = WydW (P, - Po* )W W, (3-45a)
APy(1,) = Wy I FTW(R - R*)WFW -1 (3-45b)
APy (1,) = Py(t,) . (3-45¢)

The matrices propagate in the same manner as P, P,, and P, respectively.

3.2 Sequential Filter Covariance Analysis

A sequential filter produces an estimate s*(z) based on measurements taken at discrete times #; <.
Between the measurement times #;, the state estimate x*(#) is propagated using equation (2-3). At each
time ¢;, the solve-for parameters are updated based on the propagated state x*(z;) and the measurements y;.
Typically, this update has the following form:

s*(1;) = s*(t;-) + K;Ay; (3-46)

where s*(1;) and s*(t;-) denote estimates of the solve-for parameters immediately after and immediately
before incorporating the information contained in the measurements at time #;. The gain matrix K;
determines how much the propagated state is corrected, based on the measurement residuals Ay;.
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The estimation error immediately after an update is
AS(II') = S(Ii) - S*(Ii) = S(ti) - S*(Ii-) - KiAy,- = AS(Ii-) - KiAy,- (3-47)

since the true state is continuous at #;. Substituting equation (3-4) for Ay; and using the partitioning of
equation (3-6) gives

AS(II') = AS(ti-) - Ki [GiAX(ti-) + Vi]
=(I- KiGSi) AS(ti-) - Ki [GciAC(ti-) + Vi] (3-48)

where G; has been partitioned as
Gi=[Gsi Geil - (3-49)

Substituting equation (3-10) into equation (3-48), and using equation (3-9), gives update equations for
each of the contributions to the total solve-for error:

Asg(t) = (I - KiGy) Asglty-) (3-502)
Asy(t) = (I - KGgj) Asp(ti) - Kyv, (3-50b)
Ase(ty) = (I - KiGgj) Ase(t-) - KG i@ clt; , o) Ac(ty) (3-50c)
Asy(ty) = (I - KiGygi) Asy(t;-) - KiGeiw(tisto) - (3-50d)

Each of these error contributions may be propagated individually between measurement times using
equations (3-11), with the initial conditions:

ASa(to) = ASO (3"513.)
Asp(t,) = Asg(t,) = Asy(t,) = 0, (3-51b)

where As,, is defined in equation (3-20b).

Using equation (3-11a) in equation (3-14a) gives the propagation equation for the a priori error
induced contribution to the solve-for covariance:

Po(t) = D1, 1) Pa(ty) @ I(1 1) fort; <1<ty (3-52)
where Pg(tp) =Py (3-53)

with the a priori covariance P, defined in equation (3-31). Substituting equation (3-50a) into equation
(3-14a) gives the update equation:

Pa(t) = (I - KGg;) Pa(ti-) (I - KiGg)T . (3-54)
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Using equation (3-11b) in equation (3-14b) gives the propagation equation for the measurement noise
induced contribution to the solve-for covariance:

Py(t) = Do(t, ;) Pp(ty) OgT(r, 1) fore; <t<i;y (3-55)
where Pu(ty) =0 (3-56)
Substituting equation (3-50b) into equation (3-14b) gives the update equation:

Pu(t;) = (I -K,Ggp) Pp(t;-) (I - KiGg)T + KRK,T (3-57)
with R; defined by equation (3-2b).

The consider parameter induced contribution to the covariance can be most easily expressed in terms of
the partial derivative (ds/dc)(t) implicitly defined by

As(t) = (Os/dc)(t) Ac(ty) . (3-58)
Substituting this into equation (3-11c) gives the propagation equation:

(Os/dc)(t) = Dgy(t, 1;) (05/3c)(t;) + Dge(t, 1;)Dee(ty ty) fort; <t <ty (3-59)
where (@s/de)(ty) = 0. (3-60)

Substituting equation (3-58) into equation (3-50c) gives the update equation:
(Os1dc)(t;) = (I - K;Gys;) (9s10c)(t;-) - KiG i Decltys tp) (3-61)
From equations (3-14c) and (3-58), the consider parameter contribution to the solve-for covariance is then
P(t) = (3s/de)(t) E[Ac(t,)AcT(1,)] (Os/dc)T(t) . (3-62)

As in the case of a batch filter, the dynamic noise contribution is more complicated to compute than the
other contributions. Substituting equation (3-11d) into equation (3-14d) and using equation (2-11) gives:

Py(t) = Dgy(t, 1;) Py(ty) DI(1, 1) + Dylt, ;) Pye(ty) o 11, 1)
+ D (1, 1) Py () D J(1, 1) + Dot 1) Dee(ty, 1) Dy 1(1 1)

+ Dyglt, 1;) (3-63)

fory; <t<t;, ), where
o Py(t,) =0 (3-64)
' Pye(t) = E[As, ()W (1, 1,)] (3-65)

and the random excitation covariance D is partitioned as in equation (3-7¢). It follows from equations
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(2-10), (3-7a) and (3-7b) that

Velttp) = Pecltity) Weltito) + We(tt) . (3-66)
Using this and equations (2-11) and (3-11d) in equation (3-65) gives the equation for propagating P,(t);

Puc(t) = D(t, 1) Pyc(t; ) D18 1) + Dy (1, 1) Dty ) Dyl (1 1)

+ Dge(t, 1) (3-67)

forts; <t<t;,, where

Puclto) = 0. (3-68)
From equations (3-14d), (3-50d) and (3-65), the update equations for P,(t) and P (t) are:

Py(t) = (I - KiGgp) Py(t;-) (I - KiGs)T - (I - KiG;) Pyc(ti-) G KT
~KiGei Pycl(-) (I - KiG)T + KiGei Decltity) GeTKT (3-69a)

Pyc(ty) = (I- KiGg) Pyc(ti-) - KiGei Dee(titp) - (3-69b)

A Kalman filter is a sequential filter which produces solve-for parameter estimates with minimum
covariance due to noise sources known to the filter [Gelb, Lefferts]. In addition to the solve-for parameter
estimates, a Kalman filter maintains an estimate P* of the solve-for parameter covariance, and uses this to

compute an optimal gain K; at each time ¢;. The covariance estimate P* is given by algorithms similar to
those for P, with the full state error vector replaced by the solve-for parameter error vector. The resulting
propagation equation for P* is

P*(1) = Dy ((t, ;) P(1;) DgI(1, 1) + Dgg*(t,1;) fort; <r<tyyg (3-70)

where the matrix D¢* is the estimate of the random excitation covariance used by the filter. It is based on
an assumed spectral density Q¢¢* of the dynamic noise on the solve-for parameters:

Dgg*(t, 1;) = ft "Bs(t, 1) Qg5 BT(1, 1) . (3-71)
The update equation for the colvariance estimate is

P*(t;) = (I - K,Gg;) P¥(t;-) (1 - KG )T + KR*K,T (3-72)
where R;* = an assumed value for the measurement noise covariance

and the Kalman gain is given by [Gelb, Lefferts]
K; = P*(t;-) GT [GP*(1;-)G T+ R L. (3-73)

Substituting equation (3-15) into equation (3-70), gives the following propagation equations for the
component contributions to P*:
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Pa*(t) = Dy(t, 1;) P*(1;) D T(1, 1) (3-74a)
Pp*(t) = Deo(1, 1;) Pp*(1;) @ssT(t, L) (3-74b)
PyX(1) = Dyt 1;) Py*(t) BTt ) + DggX(1, 1) (3-74c)

fort; <t < t;,;, with initial conditions
i i+1

Pg*(ty) = Py* = an assumed value for the a priori error covariance. (3-75a)

Substituting equation (3-15) into equation (3-72), gives the corresponding update equations:

Pa*(li) = (I - KiGSi) Pa*(tl'-) (I - KiGSi)T (3-763)
Pn*(ti) = (1 - KiGSi) Pn*(l‘i-) (1 - KiGSi)T + KiRi*KiT (3-76b)
PuX(t;) = (I - K;Gg;) Py*(-) (I - KiGg)T . (3-76¢)

A Kalman filter will produce an estimate with the minimum covariance P* due to the assumed
covariances P,*, R;* and Qg¢*. If the filter is mistuned, the true covariance will not be minimized. Using

equations (3-52), (3-55), (3-63) and (3-74) in equations (3-17) gives propagation equations for the
residual covariance contributions:
APy(t) = D(t, t;) APy(t;) D (1, 1) (3-77a)
APy (1) = Dy (1, 1;) AP (1;) <DSST(t, L) (3-77b)
APy(1) = Dy (1, 1;) APy(1; ) DT (1, 1) + D1, ) Pyc(t;) Dgl(t, 1)
+ Do (1, 1) Py cl(n) D T(8, 1) + D (1, 1) Dot 1) Do It 1)
+ Dgg(1, 1;) - Dgg*(t, 1;) (3-77c)

fort; <t<t;,;, where

APy(t,) = P, - Py* (3-78a)
APy (1p) = AP(t,) = 0. (3-78b)

Using equations (3-54), (3-57), (3-69a) and (3-76) in equations (3-17) gives update equations for the
residual covariance contributions:

AP4(t) = (I - KGg;) AP 4(t-) (I - K;G)T (3-792)
APy(1;) = (I - KiGg;) APy(1-) (I - KiGi)T + K; (R; - R*) K;T (3-79b)
APy(1) = (I - KiGy;) APy(t;-) (I - K,G5y)T - (I - KiGyy) Pyc(ti-) G KT

- KiGCi PucT(ti‘) (- KiGSi)T + KiGCiDCC(ti’tO) GCiTKiT . (3-79¢)
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4. CONCLUSIONS

Error analysis can be crucial during mission design, providing assistance in the specification of a
sensor complement and a calibration plan, possibly requiring a set of scheduled attitude maneuvers, to
deliver the pointing accuracy necessary to satisfy the mission objectives. Error analysis is also necessary
to determine what level of ground-based processing will be needed to meet high-accuracy attitude
determination requirements. Thus, to ensure the achievement of mission objectives, it is critical that the
analyst produce accurate estimates of determination uncertainties, especially the often-underestimated
contributions of process noise and consider parameter errors. In this paper we have presented a general,
comprehensive approach to filter and dynamics modeling for spacecraft attitude determination error
analysis.

The model is general in that it allows great freedom in specifying orbit geometry, sensor types,
measurement scheduling and parameter selection. Further, it covers both spin-stabilized and three-axis
stabilized spacecraft, with process noise appropriate to the two types of stabilization, and both batch
least-squares and sequential attitude estimation processes. This paper does not include models of sensors,
with the exception of a model for strapdown gyros used for dynamics model replacement in the three-axis
stabilized case. However, the only restriction on sensor modeling is that the measurement noise must be

additive.

The model is comprehensive in that it considers all the major sources of error in the determination
process. The model gives the separate contributions to the solve-for parameter uncertainty arising from
errors in the a priori estimates of the solve-for parameters, from measurement noise, from process noise,
and from consider parameter uncertainties, as well as the overall uncertainty due to all these sources of
error. This allows the analyst to judge the importance of various sources of error, and make informed
recommendations to reduce the effect of the largest contributors.

The analysis of the effect of dynamics errors in the batch estimation case is particularly important,
since batch filters generally do not account for this source of error. Indeed, for both the batch and the
sequential cases, the model carefully separates the estimation covariance based on frue sources of error
from the estimation covariance based on sources of error assumed by the filter. This gives the analyst the
ability to study mistuned filters. While the concept of tuning is primarily associated with sequential filters,
the presentation here makes it clear that it may also be an important consideration in the batch case.

The model for attitude determination error analysis presented here was developed as part of the
mathematical specification of algorithms for the computer-based Attitude Determination Error Analysis
System. This software system incorporates the dynamics model presented in this paper for three-axis
stabilized spacecraft, a simplified dynamics model for spin-stabilized spacecraft, slightly simplified batch
and sequential filter models and a wide variety of sensor models, including digital and analog sun sensors,
scanning and fixed-head star trackers, gimballed line-of-sight sensors, horizon sensors, and
magnetometers. The Attitude Determination Error Analysis System is currently undergoing acceptance
testing, and will be an important component of the institutional flight support software of the Goddard
Space Flight Center Flight Dynamics Division when this testing has been successfully completed.

24



B 1o~ = Ty

A General Model for Attitude Determination Error Analysis

REFERENCES

[Gelb] Arthur Gelb, ed., Applied Optimal Estimation, The MIT Press, 1974.

[Lefferts]  E. J. Lefferts, F. L. Markley, and M. D. Shuster,"Kalman Filtering for Spacecraft Attitude
Estimation," Journal of Guidance, Control, and Dynamics, Vol. 5, No. 5,
September-October 1982, pp. 417-429.

[Nicholson] M. Nicholson, F. Markley, and E. Seidewitz, Attitude Determination Error Analysis System
(ADEAS) Mathematical Specifications Document, CSC/TM-88/6001, Computer Sciences
Corporation, December 1987.

[Sorenson] Harold W. Sorenson, Parameter Estimation: Principles and Problems, Marcel Dekker, New
York, 1980

[Wertz] James R. Wertz, ed., Spacecraft Attitude Determination and Control, D. Reidel Publishing
Company, 1978.

25



N89-15936

ACCURACY STUDY OF THE
UPPER ATMOSPHERE RESEARCH SATELLITE (UARS)
DEFINITIVE ATTITUDE DETERMINATION

Frank Snow
Goddard Space Flight Center

and

Kenneth Krack, Yi-Tsuei Sheu, and William Bosl
Computer Sciences Corporation

ABSTRACT

The Upper Atmosphere Research Satellite (UARS) has two definitive attitude
determination requirements: the definitive attitude of the Modutar Attitude
Control Subsystem (MACS) and the definitive attitude of the gimbaled Solar-
Stellar Pointing Platform (SSPP). The onboard computer (OBC) will compute the
MACS attitude using a Kalman filter and will transform this attitude solution
through the SSPP gimbals to calculate the SSPP attitude. The attitude ground
support system (AGSS) will compute the MACS attitude using a batch least-
squares differential corrector algorithm and will also transform this solution
through the gimbals to obtain the SSPP attitude. This paper reports the
results of a prelaunch study to predict the accuracy of the OBC attitude
solutions and the accuracy of the AGSS attitude solutions. The OBC and AGSS
solution accuracies are then compared to establish the relative quality. The
effects of star observability, sensor noise, and sensor misalignment uncer-

tainties on attitude determination accuracy are analyzed for each case.
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The Upper Atmosphere Research Satellite (UARS) has two definitive attitude
determination requirements: the definitive attitude of the Modular Attitude
Control Subsystem (MACS) and the definitive attitude of the gimbaled Solar-
Stellar Pointing Platform (SSPP). The onboard computer (0OBC) will compute the
MACS attitude using a Kalman filter and will transform this attitude solution
through the $SPP gimbals to calculate the SSPP attitude. The attitude ground
support system (AGSS) will compute the MACS attitude using a batch least-
squares differential corrector algorithm and will also transform this solution
through the gimbals to obtain the SSPP attitude. This paper reports the
results of a prelaunch study to predict the accuracy of the OBC attitude
solutions and the accuracy of the AGSS attitude solutions. The 0OBC and AGSS

solution accuracies are then compared to establish the relative quality.

The software that was used for both the OBC and the AGSS study is the Attitude
Determination Error Analysis System (ADEAS) Program, Release 3 (CSC, 1986;
Fang, 1983). ADEAS has the ability to estimate the accuracies of both a
Kalman filter and a batch differential corrector. The ADEAS program has not
at this time completed formal acceptance testing; therefore, while the results
presented here are considered essentially correct, they may be updated in the

future.

The attitude sensors that can be used by the OBC or the AGSS are two fixed-
head star trackers (FHSTs), the inertial reference unit (IRU), and the fine
Sun sensor (FSS) on the MACS. Normally, two FHSTs will be used for attitude
determination and control. In the event that one FHST fails, the FSS on the
MACS is to be used in conjunction with the remaining FHST. In this study, the
attitude uncertainty has been estimated for the case of two FHSTs. The IRU
drift rate bias uncertainties are always solved in addition to the attitude

uncertainties.

The stars used in this analysis are taken from the combined 0OBC primary and
secondary catalogs as presented in Sheldon (1986). Every estimate of the
attitude uncertainty was repeated for two cases of star observability: (1)
When the spacecraft is flying in an orbit such that each FHST can see the

maximum number of stars (29 stars) with minimum star separation angles, this
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represents the best-case star observability during the UARS mission. (2) When
the spacecraft is flying in an orbit such that each FHST can see the minimum

number of stars (5 stars) with maximum star separation angles, this represents

the worst-case star observability during the UARS mission. These two cases
will be referred to as the 29-star case and the 5-star case, respectively.
The timespan for all cases is one full orbit, 5796 seconds (sec). The

resulting attitude uncertainties presented are those at the end of the data

batch.

The UARS ephemeris is generated internally in ADEAS with no orbit perturba-
tions and no atmospheric drag. For the 239-star case, the spacecraft is flying
forward and the FHSTs are pitching about the axis of negative orbit normal,
which is at a right ascension (RA) of 306 degrees (deg) and a declination
(dec) of -33 deg. For the 5-star case, the spacecraft is flying backward and
the two FHSTs are pitching about the axis of orbit normal, which is at RA of
118 deg and dec of 33 deg. The Keplerian orbital elements used in the study

represent the nominal mission orbit:

Semima jor axis = 6.3978065 x 106 meters
Eccentricity = 0.001486

Inclination = 57.017788 deg

Argument of perigee = 60.9378 deg
Mean anomaly = 299. 162 deg

Right ascension

216 deg for 29-star case
of ascending node {

208 deg for 5-star case

The epoch time is not important in the uncertainty analysis, as it is only

used as a time reference in the calculation.

2.0 PRELAUNCH SENSOR PARAMETERS

This section reviews values of the sensor parameters that will be known at the
time of launch, including the prelaunch estimates for sensor noise and align-
ment uncertainties and the nominal alignments of the sensors. The nominal
orientations of the attitude sensors on the spacecraft are represented by

Euler angle rotations from the MACS frame.
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2.1 FHST

The nominal orientations of the FHSTs are given as a 2-1-3 Euler sequence.

The Euler angles and the nominal fields of view (FOVs) are given in Table 1.

Table 1. Nominal FHST Alignments and FOV Sizes

Rotation Angles (Degrees) FOV
Sensor 5 5 5 (Degrees)
1 2 3
FHST A -114.27 ~48.27 0 8 x 8
FHST B 114.27 -49.27 0 8 x 8

The prelaunch value of the FHST noise is derived from the 3¢ error budget for
an 8-degree-diameter circular FOV as presented in GE (1983). The components
of the total noise are given in Table 2. The values are given in both radians

and arc-seconds (arc-sec).

Table 2. Prelaunch FHST Noise Sources (GE, 1983)

Value (30)

Noise Source (Radians) (Arc-Sec)
Noise Equivalent Angle 1.193 x 10'4 24.6
Quantization Error 3.394 x 10°° 7.0
Signal Lag Error (Unsynch) 3.636 x 10'5 7.5
Calibration Error 1.454 x 10°" 30.0

The noise equivalent angle and the signal lag error are assumed to be random
white noise. The quantization error listed in Table 2 is actually the quanti-
zation interval. The standard deviation of the random error generated by a
quantized process is v 1/12  times the quantization interval (Bendat, 1971).
The 3¢ value, therefore, for the quantization error should be 2.933 x 10-5

radians (6.1 arc-sec). The root-sum-square (RSS) of these four noises is
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1.933 x 10-‘ radians (40.0 arc-sec). This number is adopted for the FHST

noise.

The 30 prelaunch FHST alignment uncertainties are provided by GE (1988):
2.681 x 10-4 radians (55.3 arc-sec) for both the X- and Y-axes and
2.676 x 10-4 radians (55.2 arc-sec) for the boresight direction, the Z-axis.

2.2 IRU

If a spacecraft is moving with congtant angular velocity, the IRU misalign-
ments and scale factors are indistinguishable from the drift rate biases.
This condition is very closely met by UARS when it is in normal pointing mode.
Because both the OBC and the AGSS solve for the IRU biases as well as the
attitude, the contribution to the attitude uncertainty by the misalignment and
scale factor uncertainties is automatically taken into account. The IRU noise
does not contribute significantly to the attitude uncertainty and was,

therefore, not considered in this study.
2.3 SSPP

The SSPP is mounted on a two-axis gimbal system. When both gimbals are in
their nominal zero positions, the SSPP coordinate system aligns with the MACS
frame. The o-gimbal is fixed to the spacecraft and rotates about the MACS
Y-axis. It has a range of O to 360 degrees although, in actual use, the range
is restricted by spacecraft and Earth blockage. The B-gimbal is carried by
the x-gimbal and rotates about the SSPP X-axis. The B-gimbal has a range of O
to 90 degrees; however, in normal Sun-tracking operation, B will not exceed
80 degrees. (This is the sum of the UARS orbital inclination and the maximum
elevation of the Sun.) A more complete description of the SSPP geometry is

presented in the UARS FDSS Mathematical Background (Kast, 1987b).

The relevant uncertainties with regard to the SSPP are the alignment uncer-
tainty from the MACS to the SSPP gimbals, the uncertainties of the gimbal
measurements, the alignment uncertainty from the gimbals to the SSPP FSS, and
the noise of the SSPP FSS. The prelaunch estimates of each of these

uncertainties are given below. All values are 3o0.

The uncertainties c“ and oB in the two gimbal measurements have values of

9.696 x 10" radians (20.0 arc-sec) each (GE, 1986).
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The SSPP FSS noise uncertainty is taken from Adcole (1988). The value of the

uncertainty is crss = 1.745 x 10'4 radians (36.0 arc-sec).

The prelaunch alignment uncertainties are taken to be diagonal matrices of the

form

0o 0 2. 0 o
om 2 NB >
0 0 0 ) 0
Pam = om 2 F’NB = NB »
C 0 c 0 0 o
xm NB

where P“ and PNB are the covariance matrices of the MACS-to~gimbals and
gimbals-to-SSPP-FSS alignments, respectively. The uncertainties O om and GNB
were derived from data in Neste (1987). The values used are 6.545 x 10'4 and

2.424 x 10°* radians (135 and 50.0 arc-sec), respectively.

3.0 FHST ON-ORBIT_ALIGNMENT ACCURACY

The on-orbit alignment for the two FHSTs will be performed shortly after
launch. The algorithm presented in Shuster (1982) is used by the UARS AGSS.
This scheme minimizes the overall deviation of the sensor alignments from
their prelaunch values. The covariances of the misalignments after on-orbit
alignment for two sensors can be estimated by

G| -G P, (pre)

where

P¢post) = 6 by 6 postcalibration misalignment covariance matrix

(-2 )(% %]

(e )mxn

1

=
]

number of observations

2 . .
Oi = sensor noise for sensor i

31



WT = mth star vector observation tracked by sensor i, expressed in
! spacecraft body coordinates

Pi(pre) =3 by 3 precalibration misalignment covariance matrix for
sensor i

Because this alignment algorithm is attitude independent, it requires that the
star observations in the two sensors be simultaneous. Based on this algo-
rithm, a small program simulating the two FHSTs on UARS was developed to

estimate the uncertainties of the misalignments after on-orbit alignment.

In estimating the uncertainties, it is assumed that UARS will be deployed on
October 26, 1991 (an arbitrary date in late October 1931). To maximize the
period before the first yaw maneuver, it is also assumed that the spacecraft
is flying backward in an orbit whose right ascension of the ascending node is
equal to the right ascension of the Sun. The two FHSTs are assumed to be
aligned shortly after deployment using two orbits of FHST data with a total of
21 simultaneous star observations. The resultant alignment uncertainties are

given in Table 3.

Table 3. FHST On-Orbit Alignment Uncertainties

Alignment Uncertainty (3c¢)
Sensor Axis
(Radians) (Arc-Sec)
X 2.123 x 10 43.8
FHST A Y 2.468 x 10_4 50.9
P4 2.642 x 10 54.5
X 2.123 x 10 43.8
FHST B Y 2.482 x 10_4 51.2
2 2.633 x 10 54.3

Further simulation runs indicate that these accuracies are not significantly

improved by using more data.

4.0 UARS ATTITUDE DETERMINATION ACCURACY USING A KALMAN FILTER

The UARS OBC attitude determination algorithm is a Kalman filter. This filter
propagates the previous attitude solution using IRU data whenever there are no

valid star observations. when there is a valid star observation, the O0BC
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updates its estimate of the state vector, which consists of the IRU drift rate
bias and the attitude. This update occurs at intervals of 32.768 seconds.
when there are valid star observations in both FHSTs, the O0BC updates the
state vector using data from the FHST that was used Jlongest ago. This
situation produces an effective FHST sampling rate of 65.536 seconds with the

observations being taken alternately for the two sensors.

The error estimation software used in this study cannot model an alternating
sampling of the FHSTs. To estimate the effect of the alternating sampling,
the program was run for both a 32.768-second and a 65.536-second sampling
rate. The resulting variances were averaged together with a weighting propor-
tional to the fraction of time that observations overlapped, that is, the
fraction of time when there were valid observations in both FHSTs. In the
5-star case, there is no overlap; in the 28-star case, there is approximately

a 65 percent overlap.

In the 5-star case, the attitude uncertainties were taken at the end of a
three-orbit run because the Kalman filter had not converged at the end of the

first orbit.
4.1 RESULTS USING PREL.AUNCH PARAMETERS

The OBC attitude solution uncertainties using the prelaunch values of the
attitude sensor uncertainties presented in Section 2.0 are given below. For
the two cases of star observability, as discussed in the introduction, the

attitude uncertainties are given in Table 4.
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Table 4. 0BC Attitude Uncertainties Using Prelaunch Alignment
Uncertainties

Attitude Uncertainty (3c)
Case Axis
(Radians) (Arc-Sec)
X 1.572 x 107} 32.4
5-star Y 3.132 x 10_4 64.6
Z 1.584 x 10 32.7
X 1.352 x 107, 27.9
29-star Y 3.092 x 10_4 63.8
P4 1.321 x 10 27.2

4.2 RESULTS USING ON-ORBIT ALIGNMENT ESTIMATES

The AGSS attitude solution uncertainties using the on-orbit estimates of the

FHST alignment uncertainties presented in Section 3.0 are given in Table 5.

Table 5. OBC Attitude Uncertainties Using On-Orbit FHST Alignment
Uncertainties

Attitude Uncertainty (3c)
Case Axis
(Radians) (Arc-Sec)
X 1.408 x 10} 29.0
5-star Y 2.875 x 10_4 59.3
Z 1.262 x 10 26.0
X 1.195 x 107, 24.7
29-star Y 2.830 x 10_4 58.4
Z 1.036 x 10 21.4

5.0 UARS ATTITUDE DETERMINATION ACCURACY USING A DIFFERENTIAL CORRECTOR

The AGSS definitive attitude determination system is a batch least-squares
differential corrector that estimates an epoch attitude and drift rate biases
of the IRU over a batch of approximately one orbit of sensor data. This epoch

attitude is propagated to uniform time intervals using the IRU data and the
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solved IRU biases. The results given in this section are the attitude
covariances at the end of a one-orbit batch of data. It is assumed that data
from both FHSTs are available every 32.768 seconds when there are valid stars

in the FOV.
5.1 RESULTS USING PRELAUNCH PARAMETERS

The AGSS attitude solution uncertainties using the prelaunch values of the
attitude sensor uncertainties ‘presented in Section 2.0 are given below. For
the two cases of star observability, as discussed in the introduction, the

attitude uncertainties are given in Table 6.

Table 6. AGSS Attitude Uncertainties Using Prelaunch Alignment
Uncertainties

Attitude Uncertainty (3o¢)
Case Axis

(Radians) (Arc-Sec)

X 1.733 x 10 35.7

5-star Y 3.143 x 10_4 64.8

2 0.800 x 10 16.5

X 1.582 x 10} 32.6

29-star Y 3.009 x 10_4 62.1

P4 1.452 x 10 28.9

5.2 RESULTS USING ON-ORBIT ALIGNMENT ESTIMATES

The AGSS attitude solution uncertainties using the on-orbit estimates of the

FHST alignment uncertainties presented in Section 3.0 are given in Table 7.
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Table 7. AGSS Attitude Uncertainties Using On-Orbit FHST Alignment
Uncertainties

Attitude Uncertainty (3¢)
Case Axis

(Radians) (Arc-Sec)

X 1.395 x 10} 28.8

S-star Y 2.900 x 10_4 59.8

2 0.679 x 10 14.0

X 1.384 x 107 28.5

29-star Y 2.763 x 10_4 57.0

2 1.156 x 10 23.8

6.0 SSPP ATTITUDE DETERMINATION ACCURACY

This section reports estimates of the SSPP on-orbit misalignment determination
accuracy and the SSPP attitude accuracies using both the estimated OBC

attitude solution accuracy and the estimated AGSS attitude solution accuracy.

The SSPP attitude is represented as a transformation from the geocentric
inertial (GCl) coordinate system to the SSPP coordinate system. This trans-

formation can be expressed as a series of rotations

Mop = MNB MB« Mam Mo

where MNI is the SSPP attitude matrix, M and Mam represent misalignments of

NB

the B-gimbal and the «-gimbal, respectively, MBa is the product of two Euler

rotation matrices about the two gimbal axes:

MBa = M1(B) Mz(a)

and Mml represents the MACS attitude. The total SSPP attitude covariance
matrix, PNI, may be calculated from the transformations in the above equations
and their corresponding covariance matrices as follows (Kast, 1987a, Section

3.1.1.7):

36



= T T T
PNX - MNB[MBOL(MOLumIMO(m ¥ Potm)MBOL * PBO(]MNB ¥ PNB

me is the attitude covariance of either the OBC or the ground AGSS attitude

solution, Poun and PN are the covariance matrices for the SSPP misalignment

B

matrices, and P o is the covariance of the gimbal rotation. PBa is computed

B

from the pretaunch values for the gimbal rotation uncertainties and depends

on the measured « and B angles:

02 0 0
B
PBa = 0 02 cosZB -02 cos B sin B
o o«
2 . 2 4
0 -oa cos B sin B 0« sin B

6.1 SSPP ON-ORBIT ALIGNMENT ESTIMATION RESULTS

In solving for the on-orbit estimate of the SSPP misalignment, the misalign-

ment matrices are assumed to be small angle rotations of the form

1 83 -cz 1 53 -62
Mum = -83 1 81 , MNB = -63 1 61
22 -81 1 62 -61 1

The angles 61, 82, €3 represent small rotations about the MACS axes, and the
angles 61, 62, 63 represent small rotations about the SSPP axes. The angles
€_ and 61 are equivalent to x- and B-gimbal angle biases, respectively.

A FORTRAN program was written to estimate the misalignment covariance

Following Section 13.4 of Spacecraft Attitude

matrices, P and P _.
om NB

Determination and Control (Wertz, 1984), a single 6-by-6 covariance matrix

containing Pam and PN in the upper left and lower right, respectively, is

B
computed assuming that the misalignment matrices were computed using a batch
least squares differential corrector having the state vector (81, €0 51 61,

62, 63).

37



To compute the misalignment covariances, it is necessary to assume a MACS
attitude covariance for use in constructing an observation weight matrix.
Because the SSPP misalignments will be calculated on the ground, the
covariance used was the differential corrector resuits after on-orbit
alignment of the FHSTs for the 29-star case as described in Section 5.0.

Estimates of the accuracies of only the angles ¢ , ¢ €

1 2" 3
the remaining two angles were found to have poor observability. The resulting

and 61 are made as

SSPP misalignment covariance matrices (in radiansz) are as follows:

11 11 11

3.317 x 10° -1.337 x 10~ -0.353 x 10°
P = | -1.337 x 10" 3.003 x 107" 1.494 x 107"
~0.353 x 107" 1.498 x 10"'"  3.369 x 107"
and
3.839 x 107" 0
Pag = 0 6.529 x 10°° 0
0 0 6.529 x 10°°

More information concerning the SSPP misalignment accuracy estimation is

provided by Bosl (1987).
6.2 SSPP ATTITUDE ACCURACY USING KALMAN FILTER RESULTS

Table 8 presents the SSPP attitude uncertainties using the MACS attitude
covariance of the 0BC solution and the equations presented in Section 6.1.
The values reported are after on-orbit alignment of the FHSTs. Because the
SSPP attitude uncertainty for each SSPP axis depends on the gimbal angles, a
typical gimbal position of x equal to 180 degrees and B equal to 45 degrees
was chosen for reporting the per-axis uncertainty. The RSS of the three axes

is independent of the gimbal angles and is also reported in Table 8.
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Table 8. SSPP Attitude Uncertainties Using OBC Attitude Uncertain-
ties After On-Orbit FHST Alignment

Attitude Uncertainty (3c)
Case Axis

(Radians) (Arc-Sec)

X 1.726 x 10| 35.6

5-star Y 3.434 x 10_4 70.8

Z 3.289 x 10_4 67.8

RSS 5.059 x 10 104.3

X 1.560 x 10 32.2

29-star Y 3.374 x 10_“ 69.6

z 3.232 x 107 66.7

RSS 4,926 x 10 101.6

6.3 SSPP ATTITUDE ACCURACY USING DIFFERENTIAL CORRECTOR RESULTS

The SSPP attitude uncertainties resulting from the AGSS attitude solution
covariance after on-orbit FHST alignment are given in Table 9. As in Section
6.2, these values are at gimbal angles of « equal to 1BO degrees and B equal

to 45 degrees.

Table 9. SSPP Attitude Uncertainties Using AGSS Attitude Uncertain-
ties After On-Orbit FHST Alignment

Attitude Uncertainty (3c)
Case Axis

(Radians) (Arc-Sec)

X 1.718 x 10°* 35. 4

S-star | Y 3.293 x 107} 67.9

v4 3.283 x 107, 67.7

RSS 4.957 x 10 102.2

X 1.708 x 10 35.2

29-star Y 3.387 x 10 69.9

y4 3.201 x 10} 66.0

RSS 4.963 x 10 102. 4
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7.0 CONCLUSIONS

Comparison of the estimates of the OBC and AGSS attitude determination
uncertainties shows no significant differences. The ADEAS results indicate
that most of the uncertainty for both the OBC and the AGSS is due to the
effect of the FHST alignment uncertainties. This effect is the reason that
there is little difference between the 5-star case and the 29-star case. The
FHST alignment uncertainties given in Table 3 are not much less than the
prelaunch values. This result is due to attempting to estimate six
uncertainty values when three of the six degrees of freedom are unobservable.
There is, therefore, a strong, unavoidable dependence on the prelaunch

alignment uncertainties.

For all cases, the X- and Z-axes have 3c uncertainties of approximately
1.454 x 10°% radians (30 arc-sec), and the Y-axis has a 30 uncertainty of
approximately 2.909 x 10'4 radians (60 arc-sec). Based on the results of this
study, it is recommended that these uncertainties be used in UARS error budget

analyses.
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ABSTRACT

This paper considers control strategies for maneuvering spacecraft using
Single-Gimbal Control Momentum Gyros. A pyramid configuration using four
gyros is utilized. Preferred initial gimbal angles for maximum utiiization of
CMG momentum are obtained for some known torque commands. Feedback control
laws are derived from the stability point of view by using the Liapunov's
Second Theorem. The gyro rates are obtained by the pseudo-inverse
technique. The effect of gimbal rate bounds on controllability are studied

for an example maneuver. Singularity avoidance is based on limiting the gyro

rates depending on a singularity index.
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INTRODUCTION

Control Moment Gyros (CMGs) are attractive spacecraft attitude control
devices. They require no expendable propellant, which are of limited quantity
and may contaminate the spacecraft environment. Their fixed rotor speeds
minimize structure dynamic excitations. They are also capable of rapid
slewing maneuvers and precision pointing. There are two types of CMGs;
single-gimbal and double-gimbal.

The single-gimbal C(MGs have the advantages of possessing relative
mechanical simplicity and producing amplified torques directly on the
spacecraft. However, development of control laws for their use 1is made
difficult by thé existence of internal singular states. External singular
states correspond to directional angular momentum saturation. For any system
of n CMGs and any direction in space, there exists a set of 2" gimbal angles
for which no torque can be produced in that direction [1]. For double-gimbal
CMGs in parallel configuration, Kennel's law [2] has seen wide applications.
In this paper, four single-gimbal CMGs in a pyramid configuration (as depicted
in Fig. 1) are utilized.

Margulies and Aubrun [1] present a geometric theory of CMG systems. They
characterize the momentum envelope of a cluster of CMGs and identify the
internal singular states. Yoshikawa [3] presents a steering law for a roof-
type configuration with four CMGs. His steering law is based on making all
the internal singular states unstable by providing two jumps with hystereses
around the singularities. Cornick [4] developed singularity avoidance control
laws for the pyramid configuration. His technique is based on the ability to
calculate the instantaneous Tlocations of all singularities. Hefner and
McKenzie |[5] developed a technique for maximizing the minimum torque

capability of a cluster of CMGs in the pyramid configuration. Recently Bauer

43



[6] showed that it is impossible to avoid some singularities and in general,
no global singularity avoidance steering law can exist.

In the existing literature, the most commonly used steering law is based
on the pseudo-inverse technique. Neglecting the effect of spacecraft

rotation, the angular momentum H of the CMG cluster evolves as

where T is the torque demand.

This can also be written as

- = cé (2)

where C is a matrix function of the gimbal angles o. From Eq. (1) and (2), we

obtain

(3)

(@]

Q.
]

|—

Generally at least four CMGs are used for three-axis attitude control. Hence
the pseudo-inverse is utilized to obtain gimbal rate commands from the torque
command:

5 =clecch ™t (4)

Some steering laws also employ null motion, i.e. gyro rate commands that

produce no torque. Any null motion rate command oy can be expressed as
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oy = (171 - I (echy oy v (5)

where [I] is the identity matrix of the same dimension as the number of gyros
and V is any arbitrary vector of appropriate dimension. The fact that éN
commands do not produce any torques can be ver{fied by premultiplying C
throughout Eq. (5).

The basis for singularity avoidance has been to provide appropriate null
motion along with torque providing motion so that the required torques are
produced as well as singular states are avoided. Typically, at singular
states some of the gyros develop anti-parallel momentum configurations.
Thereby their full momentum capability cannot be utilized.

In this paper we present results pertaining to the following aspects of
torque generation using CMGs:

1) Investigation of the existence of preferred initial gimbal angles at
zero momentum, for given torque commands such that the maximum momentum
capability is utilized.

2) Feedback control of rotational maneuvers of spacecraft by using
Liapunov's second theorem and investigation of the effects of gimbal rate

bounds on controllability and performance.

SYSTEM EQUATIONS OF MOTION

An arbitrary asymmetric spacecraft, with the location of the ith single-
gimbal gyro, is shown in Fig. 2. Spacecraft attitude is represented by Euler
parameter vector g. The differential equations for the attitude are given by
the angular velocity vector w of the vehicle and an orthogonal attitude

matrix G(8) as follows:
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8 =% G(8) w (6)
0 BO _Bl _82 --83
w 8 8 -8 8
- X _ 1 0 3 2
where w = oy and G(B) g, 6, 8, -,

To derive the equations of motion, we follow Junkins and Turner [7]. The
detailed notation appears at the end of the paper. Ross and Melton [8]
present an alternate formulation for double-gimbal CMG systems.

Hs/c

The total angular momentum of the system about the system mass

center ¢ is composed of the vehicle's angular momentum and that of the CMGs as

follows

Each angular momentum can be expressed in vehicle frame ({v} as

Hv/c - Iv/c

H w , and
G,/c ) G,/cG,

H =m1(r1x£1)+ﬂ

G./cG,

=M, o+ H !

Then the system angular momentum can be written as
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where [ = IV/C

+ zMi, i.e. the inertia matrix of vehicle body and point-
massed gyro cluster about the ¢ in vehicle frame.
For the convenience of simulation, we assume that

1) the center of the pyramid.bottom surface coincides with the mass

center ¢ of the system.

2) the principal axes coincide with the axes of the vehicle frame

(v1.
3) Only the relative axial angular momenta of the gyros are retained.

With these assumptions, the system angular momentum in vehicle frame can

be expressed as

K/ = 1w+ 2] h, (7)

where C; is the direction cosine matrix of each gimbal frame (G} with respect

~

to vehicle frame {i} si.e. {Gy) = Ci{i}.
The time derivatives of the total angular momentum of the system with
respect to inertial frame {ﬁ} is equal to the external torque L. exerted on

the system about the mass center c:
d s/c
= 4 w9, (8)

L=

The above equation can be rewritten as
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T T T,
hy + Cj oshyd + 2 G5 hy

L. = lo + ol + (& C.h

0 -w, w _ 0 -0y 0
where w = w 0 Wy and o5 = 9y .
-w wy 0 0

In the absence of external torques and when the spin rate of wheel is

constant, L. = 0 and ﬁi= 0. Thus the system equations of motion are

o= -1 1w -1 @ clh ¢ clong (9)

SYSTEM CONFIGURATION
In this paper, the pyramid configuration for four CMGs is considered as
depicted in Fig. 1. With this configuration, the CMG angular momentum in Eq.

(7) can be written as

-Cé8So, - Co, + C6503 + Co,

2
h. =h Co, - C8S0, - Co, + CéSo, (10)

$8Sa, + $8S0, + S8S0, + S&So,

where h is the magnitude of each CMG's angular momentum and = C1 61h1 in Eq.
(9) can be written as
-Cé8Co, So, CéCo, -So, g,
AN . -So -céCo $8 cécCo %,
r C; o,h. = (o = 1 2 3 4
. i T = .
i=1 O,
LSGCG1 sécCo, Sé8Co, séCo,, éu
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We select § = 54.740 in this configuration to minimize the angular
momentum requirements as recommended by Meffe [9]. With this configuration,
we consider the preferred initial gimbal angles for some known torque

profiles.

Determination of Preferred Initial Gimbal Angles

Perhaps the most severe demand on the CMGs is a unidirectional torque.
Bauer [6] shows that for the present CMG configuration and pseudo-inverse
steering law, if the torque demand is 1 unit about the x-axis, the CMG cluster
encounters an internal singularity at a momentum value of 1.15h. This
corresponds to an antiparallel situation. The initial gimbal angles are

6 o o oT R .
[0 0 0 0] and the angles at the singularity are

o
o = [—900 0" 90" OOIT. From Eq. (10), it can be observed that the CMG
angular momentum distribution at the singularity is H = [2hcs O OJT. To
utilize the maximum momentum capability, we calculate the desired final
angular momentum corresponding to saturation. At saturation, all the momentum

vectors should point along the x-axis, i.e. g = [—900 180O 900 00]T

and H=(h(2cs +2) 0 0] =(3.1545h 0 o] .

With the desired final gimbal angles (perturbed slightly) and a torque
demand of (-1 O O]T, we integrate Eq. (4) backward until the zero angular
momentum stage is reached. The preferred set of gimbal angles is obtained as
o= [-60° 60° 120° -120°]". Similarly, several initial gimbal angles are
obtained for other desired torques as shown in Table 1. It should be noted
that the set [-1200 -60° 60" 1200] is also good for a torque demand of
[1 0 OlT. During our experimentation, we found this gimbal angle set could

avoid singularities for torquwes constrained to the x, y directions. However,

we did not experiment with time varying torques.

49



TABLE 1. Preferred Initial Gimbal Angles

Torque Demand Initial Gimbal Angles
(1 0 O] [ -60° 60° 120° -120°]
[0 1 0] [-120°  -60° 60° 120°]
[0 0 1] [ ©° 0° 0° 0°]
(1 1 1] [ ©° 0° 0° 0°]
(4 2 0] [ -60° 60° 120° -120°]
[2 4 0] [-120° -60° 60° 120°]

FEEDBACK CONTROL

Feedback control 1laws can be determined using the Liapunov stability
theory. Vadali and Junkins [10] developed the feedback control laws for
spacecraft maneuvers with external torques and reaction wheels. In this
section we derive a feedback control law for a sliewing maneuver of a
spacecraft with CMGs when no external torques exist.

The general equations for attitude and dynamics of the system are given
by Equations (6) and (9). Let the target orientation gl =[1 0 0 0] and
the final target angular velocity of vehicle g} = [0 0 0]. The error
vectors e;, and e, which represent the departure of the instantaneous states

from the desired terminal states can be written as

il
|
1
w™
-

]

€ T -weTw

Let V(e) be a trial Liapunov function defined as
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V(e) =RQI§1+%§;I§.2

where k is a positive constant. The time derivative of V is given by

V(e)

T . T. .
2k ey &) * &l g

T

lo

2k(s' - 8) b+ u

Using the identities

|
[o
"
o
-

% G{8)w , and

oo
ft

. . T T
v = -0 lw - Z(w Ciﬂi + C‘i oih‘i) ,

V(e) can be written as

T

U(e) = -k 8] 6(8)a + u'(-alu - Z(aCih; + C] 6:h.))

However, QT& = 0 and —kelG(g)E = -ET(—kE)
where B' = [8, 8, 8,]. Hence V(e) can be simplified as

T

R et T
V(e) = -w'(-ks + zC; osh.).

For V(e) to be negative definite, we can choose a linear feedback control as
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- T .
k8 + £ C; o:hy = Ka

where K is a positive definite constant matrix

K, 0 0
K=]0 «k, o0
0o 0 ,

T - . . . .
z Ci osh;, can be written as Co where C is a matrix whose rows compose of

first row of directoin cosine matric C; of each (MG gimbal frame with respect

to {Q}. Then the feedback control law becomes
Cé= K2+ kE.

Usually the number of CMGs cluster is more than three. Then we can choose the

minimum norm solution for a rate control o as
. + —
o = C (K(_n. + kB) (11)

where C* is a pseudo-inverse of C.

Thus we have the same form for o as Eq. (4).
Simulation

Equations (6), (9) and (11) are a complete set of equations which are

needed for a simulation. With a pyramid configured CMG cluster as depicted in
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Fig. 1, we present a simulation of a slewing maneuver. For critical damping,

the gains K and k are chosen as [10]

The numerical data and boundary conditions are shown in Table 2 and Table 3.
Near a singularity, the determinant of CCT becomes almost zero. The required
magnitude of control rate Iéilrincreases,enormously and exceeds the control
limit |6‘11mit‘ To avoid a singularity, Cornick [4] suggests a method using
the "null" motion. However, in this paper we choose the determinant test to
avoid a singutarity. That is, when det. (CCT) is less than Det.yjnits We
simply hold o at its most previous value. After escaping from a singularity,
we use the pseudo-inverse technique again. The selection of Det.yjpi¢ 1
based on the required Ié]imitl'

The simulation results show that without any method of avoiding
singularity, the determinant of CCT becomes almost zero many times as depicted
in Fig. 3. When using the determinant test method, many would-be singular
points are passed through with reasonable gyro rates although during the
passages there are some fluctuations in gyro rates as depicted in Fig. 4 and
Fig. 5. However, the feedback control law works very well as shown in Figs. 6
and 7. The gimbal angles are shown in Fig. 8 and the demanded torques in Fig.

9. The maneuver takes about 170 sec.
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TABLE 2. Numerical Data

Item Values

I 86.215 kg-m?

x . g-m

I, 85.07 kg-m?
I, 113.565 kg-m?
h 1.8  kg-m?
kq 13.13 N-m-sec
kz 13.04 N-m-sec
k3 15.08 N-m-sec
k 1.0 N-m

B 54.74°

Det]imit 0.1

TABLE 3. Boundary Conditions

State Initial Conditions Final Conditions
B 0.7071 1
B, 0.7071 0
B, 0 0
B, 0 0
W 0.01 r/sec 0
wy 0.05 r/sec 0
w 0.001 r/sec 0
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CONCLUSION

Rotational maneuvers of spacecraft with single-gimbal CMGs is treated.

The fact that some sets of initial gimbal angles avoid singularities for

unidirectional and planar torgue demands is observed. The feedback control

law based on Liapunov theory works well with the single-gimbal CMG system.

Avoidance of large fluctuations in ¢ needs further study.
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NOMENCLATURE

Hs/c .

v/C

G./c

j=
.

Gi/CGi

|

IV/C'

cé :

S8 2

|E

angular momentum of system about mass center c in vehicle frame
{v}

angular momentum of vehicle about mass center c in ({v}
angular momentum of gyro about mass center ¢ in {v}
angular momentum of gyro about gyro mass center cGi in {i}

inertia matrix of vehicle about ¢ with respect to vehicle frame
{v}

inertia matrix of vehicle and point-massed gyro clusters about ¢
with respect to (v}

ith gyro point-massed inertia matrix about ¢ with respect to

(V).

jth gyro relative angular momentum in gimbal frame,

hi = (0 h o]
ith gyro mass

cos(s)

sin(s)

configuration angle of pyramid

spacecraft angular velocity, QT = [w w w_]
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VECTOR

Fig, 1. CMG Configuration

Fig. 2, System with ith gyro
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Abstract

As proven in this work, all orthogonal matrices solve a
first order differential quftion. The straightforward solution
of this equation requires n“ integrations to obtain the elements
of the the n-th order matrix. There are, however, only n(n-1)/2
independent parameters which determine an orthogonal matrix. The
questions of choosing them, finding their differential equation
and expressing the orthogonal matrix in terms of these parameters
are considered in this work. Several possibilities which are
based on attitude determination in three dimensions (3-D) are
examined. It is shown that not all 3-D methods have useful
extensions to other dimensions. It is also shown why the rate of
change of the matrix elements, which are the elements of the
angular rate vector in 3-D, are the elements of a tensor of the
second rank (dyadic) in spaces other than three dimensional. It
is proven that the 3-D Gibbs vector (or Cayley Parameters) are
extendible to other dimensions. An algorithm is developed
employing the resulting parameters, which are termed Extended
Rodrigues Parameters, and numerical results are presented of the
application of the algorithm to a fourth order matrix.
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I. INTRODUCTION

In a recent paper [1] a new algorithm for solving the matrix
Riccati equation was introduced. The algorithm requires the
solution of two matrix differential equations. The solution of
one of the equations yields a diagonal matrix of the eigenvalues
of P, the solution matrix of the Riccati equation. The other
equation is

V(t)=W(t)V(t) (1)

where V is a matrix of the eigenvectors of P. Since P is a real
symmetric matrix its eigenvectors are orthonormal, consequently V
is an orthonormal matrix. (In the ensuing we will refer to an
orthonormal matrix as an orthogonal one). The matrix W is a skew-
symmetric matrix. (Note that in [1] the order of V and W on the
right-hand side of (1) is reversed. This difference should cause
no difficulty since V is the transpose of the corresponding
matrix in [1] and W is the negative of its corresponding matrix).

Let n be the order of the square Eatrix V. The number of
scalar integrations implied by (1) is n ; however, the ortho-
gonality of V invokes n(n+l)/2 relations among its elements.
Therefore there are really only m=n(n-1)/2 independent elements
in V. The superfluous computational burden involved in the
solution of (1) can, then, be reduced by properly defining the m
independent parameters of V, solving a differential equation only
for them and then performing an algebraic computation in order to
transform these m elements into V.

We observe that (1) is identical to the famous differential
equation of the transformation matrix in the three dimensional
Euclidean space which is solved on-line for attitude determination
of navigation and satellite systems. That matrix, of course, is
also orthogonal, and W is a skew-symmetric matrix whose entries
are the three components of the angular velocity vector at which
the body rotates with respect to some reference coordinates. One
question that comes immediately to mind is: does (1) always yield
a solution which is orthogonal? and conversely, do all orthogonal
matrices solve such a differential equation?

The answer to these two dquestions is formulated in the
following two theorems.

Theorem I.1l: Given equation (1) for ty, < t < t; where
WI(t) = -W(t) (2)
then:

(I) The matrix VT(t)V(t) is a constant
matrix.
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(II) If the initial matrix V(ty) is
orthogonal, then V(t) is orthogonal
too.

3
®

d_
dt
substituting (1) into (3) yields

vI(e)v(t) ] = VE(E)V(t) + VI(E) V(L)

g; VI ey v(e)] = VE(R)WT (£)V(E) + VI(E)W(E)V(E)
and when (2) is substituted into (4), it is seen that
S VT(B)V()] = o
Consequently
vT(t)v(t) = const.
and thus (I) has been proven.
Now when V(t,) is orthogonal, then
Vi () V(ty) = I
(where I denotes the identity matrix) and due to (6) also
vi(t)v(t) =1
which proves assertion (II).
Theorem I.2: Any time varying orthogonal matrix, V(t),
satisfies the matrix differential equation
V(t) = W(t)V(t)
where
WE(t) = -W(t)
Proof: Since V(t) is orthogonal

v(t) = v(t)vT(t)V(t)

Denote
w(t) = v(t)vI(t)
then (9) can be written as

V(t) = W(t)V(t)
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which is (7).
Using (10) we write
vIt)v(t) + vI(e)v(t) = vE(e)WT(t)v(t) + VI(t)W(t)V(t)
=vT(t) [WE(t) + W(t)] V(t) (11)

The left-hand side of (10) is the time derivative of VT(t)V(t)
hence (10) can be written as

S TV = v T + Wl v (12)
But
vi(t)v(t) = 1
hence the left-hand side of (11) is zero which implies that
WI(t) = -W(t)
as stated in (8). This completes the proof. [ |

In view of the preceding, it is realized that the problenm we
are concerned with is an extension of the three dimensional
attitude determination problem and conversely, the latter is a
special case of the problem at hand. It is interesting to
investigate the correspondence of the various elements involved
in three dimensional attitude determination with the eventual
solution and features of our present problem. For this reason the
pertinent background material of attitude determination will be
reviewed in Section III following a formal definition of the
problem in the next section. 1In Section IV we discuss a possible
solution. using Extended Euler Angles followed, in Section V, by
an introduction of the chosen Extended Rodrigues Parameter
solution. In Section VI we probe the issue of presenting angular
rate in n-D and in Section VII we discuss numerical issues
involved in the implementation of the solution. Numerical results
are then presented and conclusions are drawn in Section VIII.

ITI. PROBLEM STATEMENT
We state our problem as follows. Given the matrix differential
equation
V(t) = W(t)V(t)

in which W is a skew symmetric matrix and for which the initial
matrix V(t,) is known to be orthogonal, find the following:
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a) mw=n(n-1)/2 parameters which unambiguously define V,

b) the differential equation needed to be solved in
order to compute these parameters,

c) the functional relations between the parameters
and V which will enable the computation of V based
on the parameters, and

d) a simple algorithm to implement the solution of the
differential equation as well as the computation
of V.

IITI. BACKGROUND IN THREE DIMENSTIONAL SPACE

Euler Angles [2-6]

The best Xknown parameters describing a 3-D rotation and the
resulting transformation matrix are Euler Angles. Three such
angles are necessary and sufficient to describe any transformation
from one Cartesian coordinate system to any other one. There are
12 sequences of 3 right-hand Euler Angle rotation sequences. If
for example one chooses the sequence 2z-y-x rotations by the
respective angles p, t and f, then the corresponding differential
equations of the Euler Angles are

p = (wy sinf + w, cosf)/cost (13.a)
t = Wy cosf - w, sinf (13.Db)
f =w, + tant (wy sinf + w, cosf) (13.c)

where w,, wy and w,, are the three components of the angular rate
vector ~at “which the final coordinate system turns with respect
to the initial one when this vector is resolved in the final
system. The transformation matrix, D, which transforms vectors
from the initial coordinate system into the rotated one is

computable using the solution of (13) in the following expression

cp ct sp ct -st
-sp cf cp cf ct sf
D = +cp st sf +sp st sf
sp sf -cp sf ct cf
_+sp st cf +sp st cf _

where s denotes the sine and ¢ denotes the cosine functions.
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We note two shortcomings of this method. First, we run into a
singularity problem as t approaches 90° or -90° and, secondly we
need to compute trigonometric functions. For this reason the use
of Quaternions is usually preferred.

Quaternion [2,5,6]

Quaternions consist of 4 elements; that is, the Quaternion is
a 4 parameter rotation specifier. One parameter is, of course,
superfluous but this is acceptable since, using Quaternions, the
two aforementioned shortcomings, involved in the usage of Euler
Angles, are eliminated. Denote the 4 elements of the Quaternion
of rotation by g, d;, 9, and g3 then the differential equation
of the Quaternion elements is

9o 0 Wy -Wy -, do
d || _1|¥ O vz~ 91 (14)
dt d, 2 wy -w, O Wy do

d3 Wy Wy "Wy O a3

The solution of (14) yields the components of the Quaternion
which can be used to compute D as follows

302+q12-q22-q32 2(q,95-9pd3) 2(a397+dpd5) B
D = | 2(q;95+9993)  9p2-q72+a52-a32  2(4,d5-dpq;)
2(93497-9093) 2(g9593+9p497) qu‘qlzﬁqZ2+Q32

The Quaternion of rotation is based on Euler’s theorem which
states that any orientation of a 3-D cCartesian coordinate
system with respect to any reference system can be obtained by a
single rotation of the initial coordinate system about an axis
fixed in both systems. Let the positive direction (according to
the right-hand rule) of this axis be denoted by a unit vector £
and the rotation angle by £, then the components and the

magnitude of the rotation vector ff (also known as Euler Vector)
are used to define the Quaternion as follows

dg=cos(f/2) ; q,=sin(£/2)f./f
qy=sin(£/2)£,/f ; qy=sin(£/2)£f,/f

were f; i=x,y,2, are the 3 components of the rotation vector.

h i
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The Quaternion is, then, a 4 component element constructed on a 3
component vector.

Rodriques Parameters [7,8,6]
Another 3 parameter representation of 3-D rotation is due to

Rodrigues [7]. Denote the parameters by g,, g, and g3 then the
differential equation which these parameters satisfy is

K29 T 14932 g3+999; -9;+9193 | | Wy
d 1 5
ge | 92 | =3 | "93t9192 1+g, g1+9,93 Wy (15)
g3 9219193 ~91+9293 1+g52 Wy

The solution of (15) can, then, be used to compute D as follows

d = 1+glz+g22+g32

I"‘912‘922‘933 2(g9995-93) 2(9193+92)—
1
D=3 2(g919,193) 1“912+922‘g32 2(9295-97)
2(g9193-95) 2(g,93+94) 1’912‘922+932

The relationship between the Rodrigues Parameters and the
rotation vector are

g, = tan(£/2)f,/f i g, = tan(£/2)f,/f ; g3 = tan(£/2)f,/f

Since both the OQuaternion of rotation and Rodrigues Parameters
are based in a similar manner on the rotation vector, there is a
rather simple relationship between them; namely, g; = dj/dq
i=1,2,3.

The preceding equations for the time change of the Rodrigues

Parameter and for converting the parameters into D can be cast in
matrix form as follows [9,10]. Define a G matrix such that

0 g3 -9
G=|-g3 0 g; (16)
gz =9; O

and, similarly a W matrix
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0 W3 -Wz
W= |-wy O Wy (17)
w2 —wl 0
then
G = - %(I+G)W(I—G) (18)
D = (I-G)(I+G)~1 (19)

where I is the identity matrix. Like with the 3 parameter Euler
Angle representation, here too singularity may occur whenever the
size of the rotation vector reaches a magnitude of 180°.

After having discussed the possible solutions to the problem
in 3-D we will consider, next, the possibility of extending these

solutions to n-D (whenever mentioning n dimensional spaces we
mean Euclidean spaces whose dimension n#3).

IV. POSSIBLE SOLUTIONS

Extended Euler Angles

When trying to solve our problem (as defined in Section II)
the first question that comes to mind is: can the Euler Angle
parametrization presented in the preceding section be extended to
higher dimensional Euclidean spaces? As it turns out [11], Euler
himself showed that this was possible. This was also shown later
by Lagrange [12]. (See also Jacobi’s observation on their and
others’ work [13]). However, the use of the Extended Euler Angles
for n > 3 is cumbersome since, for calculating V, the sine and
cosine functions of m=n(n-1)/2 angles must be computed, these
functions have to be multiplied through in a long string of
multiplications, and the resultant products have to be added and
subtracted. For n=4, for example, the 1,1 element of V is

V1'1 = cosal cosa3 cosa5 + 51na1 51na4 51na5

and there are 16 elements, all equally long, in V. When compared
with the simplicity of the solution which we will eventually
choose the complexity of the present one will be striking.
Moreover, to complete the algorithm it is necessary to find the
differential equations governing the Extended Euler Angles
and solve them. Merely finding the equations, let alone
solving them, is a formidable task. As an example for the work
involved in deriving those equations, consider the following
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approach. Let the Extended Euler Angles be denoted by a,,
@, ceecesy . Denote the column vector whose elements are tﬁe
tﬁese angles by a. We may express V as a product of the
individual matrices V(aj) of the transformation matrix related
to a single angle a;, thus

m
v(a) =TTv(a;) (20)
i=1
Differentiation of (20) yields
. m. j-1 dV(aj) m
v(a) =2, aj[?]'TV(ai)] ------ [ TTV(a;)] (21)
= 1i=1 daj 1=J+1

Oon the other hand (20) and (1) yield
L] m
V(a) = W 2>,V(aj) (22)
1=1
equating the right-hand sides of (21) and (22) yields m equations

in a;. After cumbersome manipulations we obtain the required m
diffgrential equations for as, j=1,2,...,m whose solution yields
a, the elements of which are needed in order to compute V. We
conclude that finding the differential equations for the Extended
Euler Angles, solving them, and then using the solutions to
compute the corresponding V matrix, while possible, is indeed a
formidable task which we reject in favor of the method which we
will eventually select.

Extended Quaternion

The use of the quaternion of rotation in 3-D 1is motivated
by the following considerations. It does not suffer from
singularities, it does not require the computation of
trigonometric functions, it has a simple 1linear differential
equation and a simple geometric interpretation related .to the
rotation vector. Finally, the only price paid for using it, is
the need to deal with 4 (rather than 3) parameters. Because of
these merits, one is motivated to try to extend the notion of
quaternions to n-D. This approach though does not seem to yield a
non ~-singular parametrization even even if one is willing to use
m+1 parameters to define an extended quaternion.

Of the three 3-D parametrization methods reviewed in Section
ITI only the Rodrigues Parameters are extendible to a compact

easily implementable algorithm. This will be shown in the next
section.

V. EXTENDED RODRIGUES PARAMETERS

We start the presentation of this parametrization method in n-
D with two lemmas which will be helpful in the ensuing.
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Lemma V.l: Let A be an nxn matrix, then the matrix
(I+A) is invertible iff none of the
eigenvalues of A is equal to -1.

Proof:

The eigenvalues b; , i=1,2,...,n of (I+A) are the roots of the
polynomial

| (I+A) - bI| = 0 (23)
which can be written as
|A - (b-1)I| =0 (24)
or
|a-a1x] = o (25)
where
a=b-1 (26)

The condition for (I+A) to be invertible is b;#0, i=1,2,...,n
or, in view of (26), aj#-1, i=1,2,...,n. But in view of (25),
a; are the eigenvalues of A. This ends the proof. [ |
Lemma V.2: Let (I+A)"1 exist and let
B = (I-A)(I+a)~1
then (I+B) is invertible.
Proof:
(I+B) = I + (I-A)(I+a)~1
= (I+a) (1+A) "1 + (1-a) (1+a)"1
= 2(1+a)"1
Obviously, (I+A)~1 has an inverse which is (I+A), thus
(1+B) "1 = (1+a)/2. n
With these lemma on hand we can proceed and prove the following
theoren.
Theorem V.1: Let V be an n-th order orthogonal matrix

with none of its eigenvalues equal to -1
then
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I) there exists a matrix G defined as
follows

G = (I-V)(I+v)~1 (27)

II) G is skew-symmetric
III) V is the following function of G
V = (I-G)(I+G)~1 (28)
IV) the rate of change of G is given by

G = - %(I+G)W(I+G)T (29)

Proof: From lemma V.1 the matrix (I+V) has an inverse; thus G as
defined in (27) exists. To show that G is skew-symmetric use (27)
to write

6T = (1+v) " T(1-v) T

where -T is the inverse of the transpose (or vice-~versa). Using
the last equation and the orthogonality of V we observe that

el = (r+vTy 1 (1-vT) = (vTv+vT) 1 (yTy-yT)
= vi(v+1) 17T (v-1)
= (1+v) “lwT(v-1) = (z+v) 1 (v-1)

~(I+V) "1 [21-(I+V)] = —2(1+V) "L + 1 (30)

Now
=2(I+V) "1 + 1 = —2(1+v) "L + (14V) (T+V) 2

[=2T+(I+V) ] (I+V) "1

-(I-V) (I+V) "1 = ¢ (31)

Substitution of (31) into (30) yields the result GT = -G, i.e.
G is skew-symmetric.

From lemma V.2, (I+G) is invertible which gives legitimacy to
the right-hand side of (28). To prove the truth of (28) re-write
(30) as

6T = 1-2(1+v) "1

hence

G = I-2(1+vI)~1
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from which we obtain
I-G = 2(I+vh) "1 (32)
and

I+G

i

21 - 2(I+vh) -1 (33)
We can further write
21-2(I+vT) "1 = 2(1+vT) (1+vT) "1 - (1+vT) 1
= 2vT (r+vT) 1
thus
I+G = 2vT(r+vT)~1
and
(1+6) "1 = %(I+VT)V (34)

Substitution of (32) and (34) in the right-hand side of (28)
yields the proof of III.

To prove (29) differentiate (27)

¢ = -v(1+v)~1 - (1-v) (1+v) “Lv(14v) "1
= —[I+(I-V) (I+V) ~1jv(1+v) 1
Substitute (27) in the last equation to obtain
G = -(I+G)§(I+V)’1
Using (1) the last equation can be written as
G = —(I+G)WV(I+v)~1
Substitution of (28) into the last equation yields
G = -(I+G)W(I-G) (I+G) ~1[I+(I-G) (I+G) 1)1 (35)
The expression in the brackets can be written as follows
I + (I-G) (I+G)~1 = (1+6) (1+6) "1 + (I-G) (1+6) ~1=2(1+¢) !
therefore (35) can be written as

G = -(I+G)W(I-G) (I+G) Y[2(1+¢) 1371 = - %(I+G)W(I—G)

and since G is skew-symmetric the last equation can be written
also as
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. 1
G = - 5(I+G)W(I+G)T
which ends the proof. [ |

Note, from lemma V.1, that the condition for the invertibility
of (I+G) is that it has no eigenvalues at -1, which is analogous
to the condition for (I+V) to be invertible, i.e. that V has no
eigenvalues at =-1. However while V always exists, G does not
exist when V has an eigenvalue at -1. The parametrization of V by
G fails when the latter is the case. However this can be overcome
as will be shown in Section VII.

The parametrization of V by the Extended Rodrigues Parameters
is n-dimensional since the foregoing proofs were not restricted
to any value of n, nor did they hinge on a rotation vector or any
other geometric quality in n-D. In fact, the Extended Rodrigues
Parameters, which are the elements of G, are the answer to the
first three parts of our problem as posed in Section II. That
is we found m parameters which define the n-dimensional
orthogonal matrix, V. We also found a first order differential
equation for G, and we showed how to calculate V, once G is
found.

What is needed to fully answer our problem is a simple
algorithm to implement the solution; this will be presented in
Section VII. For now, after having obtained a parametrization in
n-D, we are prepared to discuss the meaning of the skew-symmetric
matrix, W, its geometric interpretation, and the difference
between W in 3 and in n-D.

VI. ANGULAR RATE IN n-D

Recall (1)
V(L) = W(t)V(t) (1)

The matrix V can be viewed as a transformation matrix which
transforms vector components in an n-D Euclidean space. In
particular it transforms a set of unit vectors, which form a
Cartesian coordinate system, to another such set. Let us denote
the former as the initial coordinate system and the latter as the
final one. The rows of V are components of unit vectors of the
initial set resolved in the final Cartesian coordinate system

such that v; 4 is the i-th component in the final system of the
j-th unit vettor of the initial coordinate system. From (1)
L] n

Vi3 S 2vi Kk, 3
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hence wj is the relative weight that the k-th component in the
final system, of a unit vector in the initial system, has on
the rate of change of the i-th component in the final system of
the same unit vector in the initial system. Note that this weight
is independent of j; i.e. of whlch un1t vector in the initial
system we consider. To give a more descriptive
interpretation and to see the role of ﬂ more clearly, consider
the 3-D case where, for example

V3,1 = V¥3,1V1,1 t W3,2V2

(note that the term w was dropped since w3 3 = 0 for skew-
symmetric W). In 3-D ?3%) éan be written as

(36)

V3,1 = W2Vp,1 T ViVa ) (37)
where w, and w, are the respective angular rates at which the
final coordinate system 1nstantaneously rotates about its 1 and 2
axes. The components Wi i=-1,2,3, are those of the 3-D angular
rate vector descrlblng the 1nstantaneous rotation of the final
system. In 3-D w; is also the angular rate at which the j axis
turns towards the k axis, and so on in a cyclic manner for w5 and
Wy. Indeed a comparison between (36) and (37) reveals that

W2 T VW31
W1 T ¥W3,2
We conclude that the following can be said about W in 3-D
(A) The elements of W are angular rates.
(B) Each components of W is a rate of turn of one

coordinate axis towards another such that Vb, q
is the angular rate at which axis p turns !

towards axis gq. Obviously, Yp,g = “Vq,p*
(C) Both the p and the q axes turn at the angular
rate Yp,q about the third axis r.

(D) The elements of W are components of an angular
rate vector.

When we turn now to n-D, we realize that the preceding
observation cannot be fully extended from 3 to n-D. In n-D W has
m=n(n-1)/2 independent components such that the elements of W
cannot be components of a rate vector whose number is necessarily
only n. We cannot, therefore, consider the elements of W as
angular rates about (coordinate) axes. Consequently, of the
four features of the elements of W in 3-D, mentioned above, the
only ones which also prevail in n-D are (A) and (B).

Realizing that the angular rates in n-D cannot be described
by a vector, one is motivated to examine the possibility of
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expressing the angular rate by a tensor. To accomplish that,
choose one, say the i-th, column of V(t) and the i-th column of

V(t) and denote them correspondingly by v and v such that

V= [V, Vas eeeee, V ]T and V= [Vy, Va5 eceeey vn] Using
their components express them as vectors in the same arbltrarlly
chosen coordinate system such that

v = 11V1 + 12V2 + ceeeee + lnvn

where Il' isy ey are unit vectors along the coordinate axes
1, 2, ..., N respecglvely. Similarly

v = llvl + lez + ceeeee + ann

Define a tensor of the second rank, ﬁ, using the elements of W as
follows

W= ililo + iliZwl,Z + ceeees + ilinwl,n

+ izilwz,l + izizo 4+ teee.. + izinwz,n

+ 1n11wn,1 + lnlzwn'z S 1n1n0

then obviously
V=WV

that is, when the angular rate components are treated as elements
of a tensor of the second rank, (1) is fully satisfied. A tensor
of the second rank is also known as dyadic [14].

The fact that the angular rate in 3-D is basically a tensor is
known [8,15] but is not reflected in the applled literature. The
reason for it stems, perhaps, from the wunique possibility to
express angular rates in 3-D by a vector such that its
description as a tensor might have been perceived merely as a
philosophical formalism. (Even when treated as a tensor, the
angular rate is usually that of a 3-D coordinate system).
Indeed, the creation, in 3-D, of the so called ‘'"vector cross-
product matrix" based on the angular velocity vector is
conceived as a useful gimmick rather than a restoration of the
true mathematical description of the angular rate. So far, the
consideration of angular rates in dimensions higher than 3
probably was not required nor known. Thus it was not recognized
that in higher dimensions the angular rate cannot be described
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by a vector but must be described as another entity, and that
the ability to describe it in 3-D by a vector is just a matter of
good fortune. (In fact, even in 2-D the angular rate is not truly
expressible as a vector. This is evident when we note that the
that the expression of rotation in a plane by a vector normal to
it is necessarily a 3-D expression. The correct and only 2-D
expression is

or

VZ -w 0 V2

where the first expression is in a tensor form and the second is
in a matrix form). Another possible cause for the disregard of
the fact that angular rate is a tensor stems from the fact that
the tensor of the second rank; that is, the dyadic, is
replaceable by a matrix (as demonstrated in the 1last 2-D
representation and in equation 1). Therefore all practical work
in any dimension can be carried out without resorting to the
tensor concept.

After having cleared the issue of angular rate representation
we are prepared to consider the implementation of the algorithm
for solving (1) wusing the Extended Rodrigues Parameters, thereby
solving our problem in its entirety.

VII. NUMERICAIL, IMPLEMENTATION
Recall the differential equation (1)
vV = WV (1)
in which W is given. We wish to solve (1) using the extended
Rodrigues Parameters. The solution process requires first the
solution of
G = - -;-(I+G)W(I+G)T (29)
and then the computation of V according to (28)
V = (I-G)(I+G)~1 (28)
There are two caveats which we have to be alerted to. One of them

is the non-existence of G when V has an eigenvalue at -1, and the
other is the need to invert the matrix (I+G), which may be so
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burdensome as to render the whole approach inefficient in
comparison with the direct solution of (1). The first problem can
be easily avoided if we can keep the elements of G small, for
then, as can be readily seen from (28), V is close to I whose
eigenvalues are all equal to +1. That is, if we are free to
control its size, we can always choose G so small as to make the
eigenvalues of V as close to +1 (and thus as far from -1) as we
wish. Indeed, we are able to control the magnitude of G. The
ability to do it is based on the following proposition.

Proposition: Given the differential equation of (1)

V(t) = W(t)V(t) (1)

with the initial condition V(t_.) where
V(t,) is orthogonal, then V?t), the
solution of (1) at time t > t_ , can be
written as a product of two matrices
as follows

V(t) = V(t,ty)V(t (38)

o)

where V(t,to) is the solution of (1)
at time t given the initial condition
V(tg,ty) = I.

Proof: Since V(t,) is orthogonal it always has an inverse.
Therefore one can always compute a matrix
= v(t)vT(t

vV(t,t (39)

o) o)

such that (38) holds. Now if (38) is differentiated with respect
to time the following is obtained

V(t) = Q(t,to)V(to)

Equating the right-hand side of the last equation to that of (1)
and using (38) results in

V(E, ) V(ty) = W(E)V(L,t,)V(Ey)
Since V(t,) is invertible, the last equation yields
V(t,t,) = W(Et)V(t,t,)

hence V(t,t,) solves (1). Finally setting t in (39) to t, results
in

V(tg,tg) = I
which ends the proof. |

In computing V(t) we make use of the last proposition when
we consider V(t) as a product of V(t,t,) and V(t,) as follows
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V(t) = V(t,tyl)V(t (40)

o)
and instead of computing V(t) directly we compute V(t,ty,) from
time t, to t and then use (40) to compute V(t). Actually
1nstead of computing V(t,t we use (29) to compute G, the
parametrization of V(t,t.), %rom time t;, to t with the initial
condition G(ty) = 0 which corresponds to V(t,t;) = I. The
computatlon of G is stopped periodically at, say, tl and V(t,)
is computed according to (28) yielding

V(ty,tg) = [I-G(ty)1[I+G(t;)]17L
and then V(t,) is computed using (40) as follows

V(ty) = V(ty,tl)V(ty)

Next the computatlon of V(t) proceeds into the following time
interval using the same algorithm that produced V(t,) once V(ty)
was given. We start, of course, with the initial condltlon
G(tq) =0 which corresponds to V(t,t,) = I. Using this algorithm
we proceed to compute G and V at t1mes ty, ty, eeeeey tk. By
properly choosing the size of the intervals ty-ty, t3-t,, ....,
ty~ty_.4 we can impose an upper bound on = G whlch can
practically be as small as we wish. We term the operation of
resetting the value of V  and G at the beginning of an
interval reset operation.

The foregoing policy rids us of the singularity problem. In
fact, if singularity were the only issue, one can choose the time
intervals tj- tj_1 4quite 1large and still not encounter
singularity. However, we are still left with the second problem
mentioned before; namely, the inversion of [I+G(t;)]. We overcome
this problem by approx1mat1ng the inverse w1thout really
performing any matrix inversion. Before discussing the options
for approximating this inverse we list without proof two well
known theorems (e.g. Ref. 16 p.129) needed in the ensuing.

Theorem VII.1: Let G be a square matrix then the
series .Z:'(-l)lGl converges to

i=0
(I-l-G)'1 iff all the eigenvalue of G

lie inside the unit circle about the
origin of the complex plane.

Theorem VII.2: Denote the elements of the nxn matrix
G by g3 e If the sunms
n r

.Z'lgi’jl i=1, 2’ LI ] n
J=1

are all less than 1, or if
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n
.Zlvlgi’jl j=1, 2, ..., n
i=

are all 1less than 1, then all the
eigenvalues of G lie inside the unit
circle about the origin of the
complex plane.

The algorithm we use to approximate the inverse of (I-G) is
based on the fact that if the matrix X; is a good approximation
of the inverse of some matrix A then a better approximation,

can be obtained using the Newton-Raphson-type
1%eratlon [16 p.52, 17]

Xi+1 = X; (21 - AXj) (41)

This algorithm converges if and only if the eigenvalues of
I-AX; are all of absolute value less than 1 [16, p.52]. If indeed

X; is almost the inverse of A then this condition is met. If now
V' is computed without reset taking place at the end of the

previous time increment, then we use as a first approximation of

[I+G(t)]~*, the value used as an inverse at the previous time

point. This is based on the presumption that the time increments

of the 1ntegrat10n are small enough such that the change of the

inverse is small too, hence its previous accurate value can serve

now as an approximate value. If, however, reset did take place at

the previous time point then G was set to zero and the previous

inverse of I+G is simply I. For the sake of computation reduction

it is desired to keep at minimum the number of iterations used to

compute an accurate inverse. Normally one iteration is

sufficient. However, when reset takes place and consequently the

prev1ous inverse of I+G (i.e. the inverse of I+G, for G, = 0)

is taken as I then a single iteration produces

(I+Gy) ™1 | I-Gy, (42)

where G, is G at the present time. If, however, we enter the
iteration with the value X = I-G, then, due to the quadratic
convergence characteristic of the process, a single iteration
produces

(I+Gy) "1 _ I-G,+G,2%-G,3 (43)

obviously the approximate inverse given in (43) is more accurate
than that of (42) since it contains more terms of the series
which expresses the inverse of (I+G,). Note that the series
generated by (41) converges since due to the reset operation, G
is kept at a very small value such that the condition of theorem
VII.2 is met. Thus the eigenvalues of G are in the unit circle
which, in view of theorem VII.1l, assures convergence.

Another point of interest is the ability to use an alternate
equation for computing G. From (31) it is obvious that
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2(I+v) "1 = 146
which yields
v=2(1+¢) 1l - 1 (44)

The computation of V using (44) 1is simpler than when (28) is
used. However, if the reset operation took place at the previous
time point then the use of (28) at the present time point yields
better results. This is evident in particular when the previous
inverse, (I+G-_1)‘ , is approximated by I. In this case the use
of (41) yields the approximation of (42) for which the use of
(44) yvields

V(ti,ti_l) = I- 2G4
whereas the use of (28) yields
V(ti'ti-l) =1 - 2G; + Giz

which is more accurate than the preceding result. Even when the
approximation of (43) is used, the use of (28) yields better
results than that obtained using (44). Then, however, the
difference is smaller since the term of the series which is being
added %s smaller than the added term in the previous case which
was G;“. If, of course, an exact inverse is used then the use of
(44) rather than (28) is preferable since then the computation of
V(tj,tj_1) is simplified without the penalty of accuracy
degradation.

The algorithm which results from the preceding considerations
is shown in Table I. Note that (28) rather than (44) is
implemented for the reasons discussed above.

If one chooses to perform reset after each integration step

of G then the computation of V(t;,t,) as given in Table I
produces

V(ti,tg) = I = 265 + 265° - 2653 + 644 (45)
where G; = G(tj). This is a truncated series of the expression
for V as a function of G given in (28) with the special feature
that the last term in the series lacks the multiplier 2. A more
computationally efficient algorithm than that is

V(tij,to) = I - G4{2I - G4[2I - G;(2I - G4)1]) (46)
or better yet, if G;% is added to (45) to genei'ate the true
truncation of the series expansion of (I-Gi)(I+Gi)' then the new
expression can be written as

V(tj,tg) = I = 2G5{I - G;[I - G;(I - G;)]) (47)
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Consequently one can use either the algorithm of Table I as is or
compute V(tj,t,) using either (45) or(46) or(47). These, however
are not the oﬂiy possible variants of the algorithm. As a result
of the discussions presented in this section it is clear that one
has the following additional choices:

-3
B
ed
]
I~

Given: V(t,) =V, and W(t)

(1) Set the initial condition G(t,) = 0.

(2) Solve G(t) = - %[I+G(t)]W(t)[I+G(t)]T from t, to tj-.

(3) If reset didn’t take place at the end of the preceding
cycle, go to (4).

compute X; =1 - G(ty) and go to (5).

*
(4) Compute Xil= X 3-1
*
(5) Compute A; = I + G(ty) and X; = X;(2I-74X;3)
(6) If reset is not requested go to (8).

(7) Perform a reset as follows. If reset didn’t take place
at the end of the preceding cycle compute (b).

(@)  V(tij,tg) = X;%;” and go to (c).

(b)  V(ti,tg) = [I-G(t;)I1X;"

(c)  V(tj) = V(ti,t5)V(ty)
(@) set tg = t;

(8) If the current time is equal to the final time go to
step (10)-

(9) If (7) was executed go to (1). Otherwise go to (2)
and increase all indices by 1.

(10) Stop.
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\ e Perform or not perform resets.
\ e Use more terms of the series

00
V(ty,tyq) = I + 223 (-1)";"
n=1
® Use either (28) or (44) to compute
vV(t,,t,) from Gj.

The choices should correspond to the particular problem on hand.

\ As an example we ran a 4th dimensional case where

0 -0.1 -1.0 -7.5
0.1 0 3.0 (4]
V(o) = I H wW(t) = *sin(6.28t)
1.0 -3.0 0o -0.9
_7.5 0 0.9 0 _
the initial time t, = 0.
the final time tg = 1 ..
the integration time dt = 0.001,,.

The algorithm used in the solution of V was the one given in
Table I where reset was performed after each integration step.
Equation (1) was solved to yield a reference with which the
algorithm output was compared. The reference matrix was denoted
by V.. and the one generated by the algorithm was denoted by V.

The integration routine which was used to solve the d1fferent1a1
equation for V.. as well as for G was a 4-th order Runge—Kutta
routine. The difference matrix between the two solutions was
computed and denoted by E = V-V.. A scalar which constitutes a

| measure of the size of the error was defined as follows

e = [Tr{(EET)j1/2

The scalar e is the square root of the sum of the squares of the
elements of E. The results at t = 0.55,, were:

! Vr
i -.72765515E+00 .15285696E+00 —.24387237E+00 -.62263874E+00
| .10217642E-01 .58373643E+00 .79194147E+00 -.17881859E+00
: -.13935294E+00 -.79737729E+00 .53481405E+00 -.24237192E+00

.67156112E+00 -.87171959E-02 -.16531458E+00 -.72221933E+00

83



-.72765512E+00
.10217638E-01
~.13935294E+00
.67156110E+00

«29723949E-07
-.35405291E-08
.42739559E-09
-.25932268E~07

.15285696E+00
.58373643E+00
=.79737729E+00
-.87171923E-02

-.18713478E-09
~.25268088E-09
+.12413215E-08
-35672249E-08

-.24387236E+00
.79194147E+00
.53481405E+00

-.16531458E+00

.83326148E-08
-.11170641E-08
.86561824E-09
.95984923E-09

-.62263872E+00
-.17881859E+00
-.24237191E+00
=.72221930E+00

.24813968E-07
.71958844E-09
.83593105E-08
.29599694E-07

e = .56724776E~-07

As mentioned earlier the algorithm of Table I with a reset at
the end of each integration cycle amounts to the use of (46) in
the - computation of V(ti,t,). As suggested, (47) can be used
instead. In Table II we show a comparison between the use of (46)
and (47) for different series lengths. The table presents the
error measure, e, for the two series truncated after different
powers, n, of G. The error measure was recorded at t = 0.5,,, for
at that point, which is half the period of the oscillating W, the
value of e is the highest during the first period, i.e., in the
domain 0. < t < 1. . As can be seen from the results, algorithm
2 is superior. It can be also seen that there is a distinct power

Table II

.17 | .52 | .17 | .57 | .13
1. V(ty,ty)=I-26;+2G6;2- ... G;"
E 01| E-02| E-04| E-07| E-09

. o -20 | .34 .21 | .33 | .63
2. V(tj, tg)=I-2G;+2G;%~ .. 2G;
E-01| E-04| E-06| E-09| E-10

beyond which the addition of more terms yields little return. In
view of these conclusions we recommend the use of the algorithm
listed in Table III which in fact was used in the first example.
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Given: V(t,)

(1) Initialize i =0
(2) Set the initial condition G(tj;) = 0.

(3) Solve é(t) = - %[I+G(t)]W(t)[I+G(t)]T
from ti to ti+1'

(4) Compute
V(ti41,t5) = I-2G147{I-G41[I-Gj47(I-Gj41)])
V(ti41) = V(ti4,85)V(E])

(5) If the current time is smaller than the final

time go back to step (2) and increase all
indices by 1, otherwise STOP.

VIII. CONCIUSIONS

This work addressed the problem of solving the first order
differential equation, which every orthogonal matrix satisfies,
using the minimum number of parameters necessary to uniquely
determine the matrix. The major question was: which are the
parameters that do determine this matrix. The other questions
were: what are the differential equation which one has to solve
in order to find the parameters, and: once the parameters are
found, how to use them in order to find the corresponding matrix.
All these questions were answered and several algorithms for
computing the orthogonal matrix via the parameters were suggested
and investigated.

In search for solutions the familiar special 3-D case was
examined with the purpose of extending the methods used there to
the general n-D case. Accordingly, the first thought that came to
mind was the idea of extending the concept of Euler angles to the
n-D case. It turned out that, although not well known, Euler
himself succeeded in using Euler angles to parametrize higher
dimensional orthogonal matrices. Euler, however, was not
concerned with the dynamic case; that is, with the differential
equation which describe their change in time (neither did he do
it for the 3-D case). Lagrange improved Euler’s approach and
presented it in the first edition of his book on analytic
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mechanics. We did not adopt this approach because of the
multitude of the trigonometric functions that one has to trace
and compute and because of the complexity of the differential
equations which describe the time change of the extended Euler
angles.

Another popular 3-D parametrization which was considered was
the quaternion of rotation. This approach did not seem to lead to
any solution and was abandoned. The last parametrization which
was examined was that of Rodrigues. In the vast literature on 3-D
methods the elements of this parametrization are known as: Gibbs
vector or Cayley-Rodrigues parameters; however, the presentation
of these parameters by Rodrigues in 1840 [7] preceded the work of
Cayley .who, as a matter of fact, credits Rodrigues with their
discovery [18,19]. Rodrigues’ work certainly preceded that of
Gibbs who first published his research of these parameters in
1884 (see Ref. 9, p. 17). Although it seems that Rodrigues was
the first one to present them, it turns out, as noted by Jacobi
[13] and by Roberson [8], that even these parameters were
first presented by Euler ([20] although in a different form.
Ironically, while Rodrigues based his development on the, by now,
very famous theorem of Euler [21], Euler himself was not aware of
the possible use of his own theorem in the derivation of these
parameters. (The theorem states that any final sequence of 3-D
rotations can be represented by just one rotation about a single
fixed axis)”. It is, however, Rodrigues who developed the
parameters in their present known form. For this reason we refer
to their extension to n-D as the Extended Rodrigues Parameters.
It was shown that the parameters can be conveniently extended to
n-D. In fact there is nothing that limit their wvalidity to 3-D
only. Indeed, the theorems used in the presentation of the
Extended Rodrigues Parameters in this work do not assume any
restriction on the dimensionality of the space in which they are
used.

Projecting the 3-D concepts into n-D raises the question of
the correct mathematical representation of angular rates in
spaces whose dimension is not 3. It is shown that angular rate
has to be represented by a tensor of the second rank, also known
as dyadic. The ability to represent angular rate as a vector is
unique to 3-D. This fact, while known before, was not paid
sufficient attention because the vectorial representation
satisfied the intuition and the practical needs of its users. In
other dimensions the vectorial representation fails and the use
of the dyadic representation is required. Finally it should be

pointed out that when, as in our case, matrices are used, the
skew-symmetric dyadic which represents angular rate in n-D is
simply represented by a skew symmetric matrix.

* As noted by Jacobi, Lagrange too presented this theorem in the
first edition of his book on analytic mechanics [12] but
dropped it as well as the treatment of rotations from the
second edition of this book.
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THE OPTICAL FIELD ANGLE DISTORTION CALIBRATION FEASIBILITY STUDY
FOR THE HUBBLE SPACE TELESCOPE FINE GUIDANCE SENSORS

K. Luchetti, G. Abshire, L. Hallock, and R. McCutcheon
Computer Sciences Corporation

ABSTRACT

The results of an analytical study to investigate the feasibilty of calibrating the Hubble Space
Telescope's (HST's) fine guidance sensors (FGSs) within HST mission accuracy limits are pre-
sented. The study had two purposes: (1) to determine the mathematical feasibility of the optical
field angle distortion (OFAD) calibration algorithm and (2) to confirm that the OFAD, plate scale,
and FGS-to-FGS alignment calibration algorithms produced a calibration of the FGSs that satisfied
mission requirements. The study concluded that the mathematical specification of the OFAD algo-
rithm is adequate and permits a determination of the FGS calibration parameters ( accurate to better
than 0.003 arc-second) sufficient to meet the mission requirements. The algorithms implemented,
the characteristics of the simulated data and procedures for data analysis, and the study's results are
discussed. In addition, several useful techniques for improving the stability and accuracy of the
OFAD solution are outlined.

1. INTRODUCTION

1.1 STUDY BACKGROUND AND PURPOSE

The success of the Hubble Space Telescope (HST) depends critically on the capabilities to accu-
rately place a target in the desired fine guidance sensor (FGS) aperture, precisely control HST
pointing, and track moving targets in any FGS aperture. These capabilities depend, in turn, on
precise determination of the optical field angle distortion (OFAD), plate scale, and relative align-
ments of the FGSs. Failure in any of these calibrations means failure to meet HST mission accu-
racy requirements. Using data as realistic as possible, we conducted a feasibility study to verify
that the HST Payload Operations Control Center (POCC) Applications Software Support (PASS)

algorithms for these calibrations will, in concert, satisfy mission accuracy requirements.

C- 2
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We performed the study using PASS software implementing the current form of the optical
telescope assembly (OTA) calibration algorithms, original versions of which were specified
by Perkin-Elmer (P-E) in 1984 (References 1 through 4). The current forms of the algo-
rithms incorporate corrections and enhancements recommended by Computer Sciences
Corporation (CSC), Goddard Space Flight Center (GSFC), Marshall Space Flight Center
(MSFC), W. Jefferys of the astrometry team, and K. Minka of Computer Technology
Associates (CTA). The baselined source specifying the mathematical details of the OTA
algorithms is the PASS requirements specification document (Reference 5).

Performance of the feasibility study required the careful coordination of eight separate
software functions: data simulation, telemetry processing, data adjustment, plate scale
calibration using the calibrated plate method, optical distortion calibration using the mini-
OFAD algorithm, plate scale calibration using the moving asteroid method, optical distor-
tion calibration using the P-E-supplied OFAD algorithm, and FGS-to-FGS alignment
calibration. We used the PASS attitude data simulator, which was originally developed to
test attitude determination software, to generate data for all of the calibration functions
studied. Reference 5 provides a detailed description of the simulator's algorithms and capa-
bilities. We used the PASS offline telemetry processor (OTP) to convert the necessary HST
FGS data to usable engineering format for the study; Reference 5 provides a detailed
description of the OTP.

1.2 ARTICLE OVERVIEW AND TERM/CONCEPT DEFINITION

Section 2 of this article briefly describes the algorithms for the data adjustment and cali-
bration functions analyzed in the OFAD feasibility study. Section 3 outlines the evolution
of the OFAD algorithm in response to various problems encountered during OFAD proto-
type software testing. Section 4 details the data simulation and data reduction activities of
the feasibility study; in addition, that section specifies the calibration scenario followed in
the study, as well as the original strawman scenario recommended by P-E. Section 5 dis-
cusses the results of the study, and Section 6 specifies the conclusions.

The following paragraphs briefly define terms used and concepts referred to throughout
this article:

FGSs -- Each of the HST's three FGSs consists of a system of photomultiplier tubes
(PMTs) and amplitude interferometers in white light (Koesters' prism). Because only two
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FGSs are required at any particular time for guidance, the third FGS can be used to conduct

high-precision astrometric observations.

Image and Object Space -- An image space measurement is the direction of the observed
star as measured by the FGS. An object space measurement is the true direction of the
observed star. The difference between object and image space measurements is the
magnification of the FGS.

Star Selector Deviation and Offset Angles -- Two beam deflectors, called star selectors,
rotate to bring light from an object anywhere in the FGS field of view (FOV) into the 5-by-
S-arc-second square aperture of the FGS detector assembly. Each of the two star selectors
(star selectors A and B) provides a conical scan vector with a diameter of 7.1 arc-minutes in
object space. Figure 1 illustrates the star selector deviation and offset angles:

V1-AXIS

Note:

8 4 snd Op = star selector A snd B devistion sngles, respectively
§ 4204 §p = star selector A and B offset angles, respectively

Figure 1. FGS Star Selector Deviation and Offset Angles

Distortion Polynomials -- The OFAD algorithm solves for distortion coefficients for use in

converting distorted star positions to undistorted star positions in object space. Although
the distortion coefficients (also referred to as distorted-to-true coefficients) are not required
by any elements of the HST software system except OFAD, the PASS software converts
them into coefficients that are used throughout the HST system, as specified below.
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Coefficient Type Used By

Distorted-to-undistorted image space PASS attitude determination software
PASS OTA calibration software
Undistorted-to-distorted image space PASS mission scheduling software

PASS attitude simulation software
Undistorted-to-distorted object space Onboard flight software (OBC)

Observation Sets and Maneuver Sequence -- Because of the OFAD algorithm's complexity
and the large number of parameters solved for in an OFAD execution, the algorithm
requires a large quantity of input data (i.e., FGS measurements) to obtain a valid distortion
calibration. The HST collects the data by taking FGS measurements of a star field at several
different spacecraft attitudes. The measurements of a star field at a specific attitude are re-

ferred to as an observation set or frame.

The maneuver sequence for collection of OFAD data consists of 13 pitch-yaw maneuvers
and 2 roll manuevers from a reference attitude. The pitch-yaw maneuvers include nine
manuevers forming an ellipsoid about the reference attitude and four larger offset maneu-

vers toward the FGS wings. Each observation set consists of approximately 30 stars.
2. BRIEF ALGORITHM DESCRIPTIONS

Calibration of the HST's FGSs involves four major software functions: data adjustment
(initial data reduction), plate scale calibration, optical distortion calibration, and FGS-to-
FGS alignment calibration. This section briefly describes the algorithms for these func-
tions, which were originally provided by P-E and revised by CSC and P-E as required.

2.1 INITIAL DATA REDUCTION

The purpose of initial data reduction is to read onboard computer (OBC) quaternion and
FGS data from the OTA engineering data file (output from the OTP), edit these data to
eliminate any irregularities, locate FGS star tracks, and form and identify FGS observation
vectors corresponding to these tracks. The primary output from initial data reduction is the
OTA prepared data file, which contains the computed FGS image space vectors and
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associated information. The OTA prepared data file is the primary input to the OFAD, plate
scale, and FGS-to-FGS alignment calibration algorithms.

2.2 PLATE SCALE CALIBRATION

The purpose of plate scale calibration is to compute the scale factor that converts FGS
measurements from image to object space. The PASS software currently provides two
methods for computing the plate scale: (1) the calibrated plate method and (2) the moving
asteroid method. The calibrated plate method uses ground-measured star observations to
determine the plate scale. Because this method cannot produce the accuracy required, it
serves as an interim technique. The moving asteroid method uses minor planets, specially
selected by the astrometry team, that move across the length of the FGS FOV. The use of
these planets, whose ephemerides are well known (i.e., to within approximately 0.5
milliarc-second), enables a high level of accuracy in plate scale calibration. In both cases
the primary input is the OTA prepared data file produced by the initial data reduction func-
tion, and the output is the FGS plate scale.

2.3 OPTICAL DISTORTION CALIBRATION
The purpose of distortion calibration is to compensate for any biases in FGS-measured star
directions that cannot be modeled by a rotation (via FGS-to-FGS alignment calibration) or

by a scale (via plate scale calibration). P-E models distortion using polynomial functions of
the direction cosines, as specified by the following equations:

L JM
XU=XD - ZaLM XDYD
LM
L M
Yy=Yp - ¥bim XpYp
LM
where Xy, Yy = undistorted X and Y object space direction cosines, respectively

Xp, Yp = FGS-measured distorted X and Y object space direction cosines,
respectively
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aj \p = distorted-to-undistorted object space distortion coefficient for the X-
polynomial for which the exponent of the X direction cosine is L and
the exponent of the Y direction cosine is M

by m = distorted-to-undistorted object space distortion coefficient for the Y-
polynomial for which the exponent of the X direction cosine is L and
the exponent of the Y direction cosine is M

The PASS software currently includes two algorithms for calibrating distortion: (1) the
method provided by P-E and referred to as the OFAD algorithm and (2) the mini-OFAD
algorithm. The mini-OFAD algorithm, the simpler of the two, solves only for the dis-
tortion polynomial coefficients, whereas the OFAD algorithm solves for many peripheral
parameters, specifically the star direction cosines and the attitude maneuver angles. Be-
cause the mini-OFAD algorithm determines fewer parameters than does its more complex
counterpart, it requires less FGS data for input. However, the mini-OFAD algorithm must
use ground-measured star directions as input when specifying star reference directions; and
because the error in the ground measurements is expected to be an order of magnitude
higher than the OFAD error budget, the simpler algorithm cannot generate final distortion
calibration values. The mini-OFAD algorithm can initialize the OFAD algorithm, which
internally computes reference star direction cosines and therefore does not require input of
ground measurements. The OFAD algorithm can also solve for offset and deviation angles,
a capability that currently is not present in the mini-OFAD algorithm. For both algorithms,
the primary input is the OTA prepared data file produced by the initial data reduction func-
tion. The user can reject any suspect observation in this file before it is used by the algo-
rithm. Sections 2.3.1 and 2.3.2 describe the two OFAD calibration algorithms in greater
detail.

2.3.1 Mini-OFAD Algorithm

The mini-OFAD algorithm calibrates the distortion coefficients using a least-squares pro-
cedure (References 6 and 7) that compares the direction cosines of an FGS-measured star
field to ground-measured values. The equations of condition are of the form

L M c _
Xp - Zauu Xp5Yp -{[RMm]gA . =0
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Yp- Sy XpYp - {IR 1€ }, =0
D™ G D "D MINT PA Y —
where [Ry ] = rotation error matrix

e
€ = differential aberration-perturbed ground-measured star vector rotated into

FGS object space

and Xp, Yp, a, and by are as defined in Section 2.3. The algorithm generates a pair of

equations of condition (X and Y) for each star observation.

The distortion calibration using the mini-OFAD algorithm proceeds as follows. First, the
FGS-measured image space direction cosines are transformed to object space (generating
the parameters Xp, and Y, for each star observation) using the current plate scale value.
Next, the ground-measured background star right ascensions and declinations are trans-
formed to geocentric inertial (GCI) reference frame vectors (GCI coordinates are Earth-
centered celestial coordinates), and full velocity aberration effects corresponding to the
observation time are applied to the GCI vector. Using the telemetered attitude and the cur-
rent alignment value, the full velg\city aberration-perturbed GCI vector is rotated to FGS
object space, yielding the vector § X which contains differential velocity aberration pertur-
bations. In the first distortion calibration sequence, the rotation error matrix [Rymny] is ini-
tialized to the identity matrix. Using these values for Xp, Yp, /E\ x and [Ryqyg] and initial
estimates for aj ) and by, updated distortion coefficients are determined to provide the
best fit to the equations of condition.

Following convergence (or upon exceeding a maximum number of iterations), an updated
value of [Rymy] is determined as follows. Using the updated distortion coefficients, the

undistorted FGS-measured direction cosines (X and Yy) are determined using the equa-
tions specified in Section 2.3. Least-squares computation of the distortion coefficients
followed by g-method calculation of the rotation error matrix is iterated until convergence is

achieved or a maximum number of iterations is cxcced/gd. Using the g-method (Reference
8), the rotation matrix [Ryqngl, which maps the vector § 4 into the undistorted measurement

vector, Xy, Yy, Zy)T, is determined. In effect, [Rmmi] is an error matrix that corrects for

errors in the FGS alignment matrix and telemetered attitude quaternion.
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The only output from distortion calibration using the mini-OFAD algorithm is the distortion
polynomial coefficients, which are used as initial estimates to the OFAD algorithm and can
also be used as input to the other OTA calibration algorithms described in this article.

2.3.2 QFAD Algorithm

The OFAD algorithm calibrates the distortion coefficients, as well as offset and deviation
angles, using a least-squares procedure (References 6 and 7) that compares the direction
cosines of a star field at several spacecraft attitudes (referred to hereafter as observation
sets). A somewhat simplified version of the equations of condition (ignoring terms relative
to offset and deviation angle biases) is

Xp - Say XpYp - {[Dal [Ryax] E}x =0

Yp - LEMbIM XlﬁYg - {[DA] [Rmaxi] ET}Y =0

where  [D,] = matrix that adds differential velocity aberration at the time of the

observation to the "true" star direction vector at the given attitude

[Rpmaxa] = attitude change Euler angle matrix for transformation from the reference

observation set to other observation sets

N\
Er = "true" star direction cosines in FGS object space at the reference

observation set

and Xp, Yp, ap M, and by are as defined in Section 2.3. The algorithm generates a pair of

equations of condition (X and Y) for each star observation.

Distortion calibration using the OFAD algorithm proceeds as follows. FGS-measured

image space direction cosines are transformed to object space (generating the parameters
Xp and Yp, for each star observation) using the current plate scale value. Initial estimates of

/\ - 3 - . - . . - . .
the vector &t are obtained by removing distortion (using the initial distortion coefficient

values) and differential velocity aberration from FGS measurements of star directions at the
reference observation set attitude. Initial estimates of [Ry 5 xj] are obtained using the
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g-method. The matrix [Rysxg] that transforms the reference observation set to the reference
observation set is defined to be the identity matrix. Updated values of /Q\T and the Euler
angles defining [Ry ax] are determined as part of the least-squares process that determines
updated values of the distortion coefﬁci;c\nts, along with updated offset and deviation
angles. Using these values for Xp,Yp, &r, and [Ryaxg) and initial estimates for ag y and
by » updated distortion coefficients, offset and deviation angles, true direction cosines,
and attitude change Euler angles are determined to provide a best fit to the equations of con-
dition. The iterative process is continued until convergence is achieved or a maximum
number of iterations is exceeded. Once a satisfactory solution is achieved, the final coeffi-
cients, offset angle, and deviation angle(s) are output.

2.4 FGS-TO-FGS ALIGNMENT CALIBRATION

The purpose of FGS-to-FGS alignment calibration is to determine the orientation of FGS-1
and FGS-3 relative to FGS-2. FGS-2 defines the HST vehicle reference frame. The pri-
mary input is the OTA prepared data file produced by the initial data reduction function, and
the output is alignment matrices for tramsformation from the FGS-1 and FGS-3 frames to
the HST vehicle frame.

3. EARLY OFAD PROBLEMS, STUDIES, AND SOLUTIONS

Following our implementation of the basic OFAD algorithm in the prototype software, we
began a series of new tests using simulated data corrupted by noise and solving for a broad
spectrum of distortion coefficients and offset angle/deviation angle combinations. These
tests revealed previously unexpected accuracy, observability, and numerical stability prob-
lems. W. Jefferys confirmed many of these problems using his independent software im-
plementation of the OFAD algorithm. Because of the OFAD algorithm's high level of
complexity and the difficulties experienced during attempts to solve many of these new
problems, GSFC and MSFC decided to create an OFAD technical team to coordinate the
efforts of those individuals in the HST community most knowledgeable in the subtleties of
the OFAD algorithm. The team, headed by P. Davenport of GSFC, also included

F. VanLandingham, G. Abshire, and L. Hallock of CSC; M. Margulies and

L. Abramowicz-Reed of P-E; R. Jayroe of MSFC; and W. Jefferys of the University of
Texas. The insights of the team into the inner workings of OFAD produced many highly
successful enhancements to the original algorithm and resulted in improvements to pre-

launch operational procedures and maneuver planning.
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This section briefly discusses several of the contributions of the OFAD technical team
toward creating a reliable OFAD algorithm.

3.1 OBSERVABILITY AND NUMERICAL STABILITY PROBLEMS

The standard P-E distortion polynomial, consisting of 11 terms in each axis, has the form

_ 2 3
L%:?LM Xlls thg = 3 0Xp +20Xp + 2, 1 XpYp + ao,zle) +234Xp

2 2 3 5
+ aZ.IXDYD + al'szYD + a0'3YD + a5'0XD

3 4
+ a3'2XDY[2) + a1'4XDYD

L oM _ 2 2 3
LZMbLM X Yp = by, Yp + Py oXp + 01 1 XpYp + Do 2 YD + b3 0Xp

2 2 3 5
+ 0y 1 XpYp + b, oXpYp + by 3Yp + by s YD

2 4
+ b2,3XDY13) + b4,1XDYD

where ap \;, by v, Xp, and Y[, are as defined in Section 2.3. Most of the early "perfect"

data tests (i.e., tests with simulated data uncorrupted by noise) executed using the OFAD
prototype software and data generator studied only a subset of the full 11-term polynomial,
specifically the 3 quadratic and 4 cubic coefficients. The next step in the algorithm test pro-
cedure was to expand the scope of the tests to include linear and fifth-order coefficients.
These tests produced algorithm failures centering on the inability of the software to invert
the large matrices (having dimensions greater than 100) used in the least-squares calcu-
lations.

In the case of the linear coefficients, the inversion problem had two causes. First, we deter-
mined empirically in testing that unless roll maneuvers were included in the OFAD maneu-
ver sequence (nominally the simulated data included two observations sets consisting of a
+10-degree roll and a -10-degree roll from the reference attitude), no linear coefficients
could be determined. Jefferys confirmed this finding analytically and soon afterward mod-
ified the planned OFAD observing sequence to include two pure roll maneuvers. The
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second anomaly discovered during testing was that the a, o and by ; coefficients (linear
terms), when taken together, contain a plate scale component, which is not observable by
the OFAD algorithm. The initial solution to this problem was to hold the by ; coefficient
constant and solve for only the a, o coefficient. A later enhancement (discussed in Section
3.3) constrained the solved-for distortion polynomial's a, 4 and by ; coefficients from hav-
ing a scale component and thereby permitted solving for both linear coefficients. The ag
and b, ( coefficients (linear cross-terms), when taken together, contain a rotation com--
ponent, which is not observable by the OFAD algorithm. To solve for the linear cross-

_terms, the required procedure at that time was to hold the b, ( coefficient constant while
solving for the aj; coefficient. (The current implementation of both the mini-OFAD and
OFAD algorithms allows the user to select any polynomial up through fifth order, with a
default to the P-E 11-term polynomial.) A later enhancement (discussed in Section 3.3)
constrained the solved-for distortion polynomial's a5 ; and b,  coefficients from having a
rotation component and thereby permitted solving for both linear coefficients.

Numerical underflow produced the matrix inversion problems in solving for fifth-order
coefficients. We solved this problem by adding numerical scaling parameters to the calcu-
lations. With appropriately selected values, these parameters provide adequate underflow
protection and eliminate a purely numerical source of instability.

3.2 NOISE-CORRUPTED DATA PROBLEM

The effect of corrupting data with noise was the most difficult of all the OFAD problems to
solve. Efforts to solve this problem resulted in the enhancement of the original OFAD
algorithm with constraints and led to the creation of the mini-OFAD algorithm (Section
3.4). We discovered the problem during our first tests with simulated data corrupted by
noise. With perfect data the OFAD algorithm could solve for the "true" distortion polyno-
mial coefficients (i.e., the coefficients simulated in the data generator) to a precision of
eight significant figures, even with a very poor initialization. However, with the addition
of noise, the effective difference between a solved-for coefficient and the corresponding
true value of the coefficient appeared to be one to two orders of magnitude higher than the
noise in the data. To determine more quantitatively the size of the discrepancy, we coded a
small prototype software utility (called the goodness-of-fit utility). This utility revealed that
the resulting error in the undistorted vector computed using the solved-for coefficients was
between 60 and 100 times the noise. We therefore referred to the anomaly as "noise

magnification."
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Jefferys explained the nature of the noise magnification effect empirically (Reference 9),
and Davenport explained it analytically (References 10 and 11). Jefferys analyzed the dif-
ference between expected and solved-for values and demonstrated that the error could be
modeled by an affine transformation (linear translations plus rotation). After removal of the
affine fit, the remaining errors were approximately the same size as the original noise.
Davenport demonstrated analytically that over the small FOV of an FGS, without input
ground measurements to constrain the solution, the polynomial solution could be expected
to acquire undesired affine terms. Soon afterward, Davenport further rcﬁned his result by
proving that the dominant error term can be characterized by a similarity transformation,
i.e., a combination of translations in X and Y, a rotation about Z, and a change in plate
scale. Jefferys also observed this empirically (Reference 12). The OFAD algorithm can
observe none of the four components of a similarity transformation. However, determi-
nation of the combined translations and rotations, at least in a relative sense, is possible via
FGS-to-FGS alignment calibration (Section 2.4), and, of course, determination of the
change in plate scale is possible via plate scale calibration (Section 2.2). It was clear that
unless the undesired similarity terms could be kept out of the polynomial solution, the only
way to verify the accuracy of the OFAD solution would be to undertake a massive simula-
tion effort in which a complete set of FGS calibration parameters (distortion coefficients,
plate scales, and FGS-to-FGS alignments) would be determined for each FGS with highly
realistic simulated data, following which the overall accuracy of the complete parameter set
would be evaluated. Even if such a simulation indicated that the overall accuracy of the
whole parameter set met mission requirements, the necessity of relying on an OFAD algo-
rithm that under operational conditions would displace the solved-for distortion coefficients
from the initial values by a large, unpredictable similarity transformation was clearly unde-
sirable.

To alleviate this problem, Davenport recommended introducing four constraints on the
OFAD state vector that he believed would inhibit formation of the observed similarity
transformation between the solved-for distortion coefficients and the truth (Reference 13).
The effect of the constraints was to prohibit the solved-for true direction cosines from pick-
ing up similarity terms that could be passed on to the solved-for distortion polynomial. Be-
cause no constraint features existed in the original OFAD formulation,the software was
enhanced with the new equations specified by Jefferys (Reference 14) and Abramowicz-
Reed (Reference 15) incorporating Davenport's constraints in OFAD. Section 3.3 dis-
cusses the results of our tests using OFAD software containing this constraint capability.
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Finally, the technical team made tentative plans to carry out a full-scale simulation to test the
validity of the combined OFAD, plate scale, and alignment calibration solutions in the
event that the results of the upcoming tests on the enhanced OFAD algorithm did not prove
unambiguously successful. In particular, CSC and P-E began identification and specifi-
cation of a complete set of biases and physical effects required for generation of realistic
simulated data.

3.3 INITIAL ESTIMATES FOR CONSTRAINTS

After implementing in prototype software Davenport's constraints on the solved-for refer-
ence observation set star direction cosines (Section 3.2), we began testing the enhanced
algorithm with a variety of input polynomials. We determined that the constrained version
of the OFAD algorithm, unlike the unconstrained version, was highly sensitive to the accu-
racy of the distortion coefficient initialization values. The cause of the problem was that the
values of the reference direction cosines used to initialize the OFAD least-squares process
were determined by removing distortion (using the initial estimates of the coefficients) from
FGS measurements of star directions at the reference attitude. Because these initial values
of the direction cosines were used to constrain the solved-for values of the direction
cosines, once an error was induced in the direction cosines (via the initial coefficient esti-
mates), the algorithm could not recover from the error. As a result, the OFAD algorithm
tended to converge to a polynomial solution very close to the initial estimates. In particular,
if the OFAD algorithm was initialized with a polynomial having different similarity proper-
ties than the "true" polynomial, the effect of the constraints would be to prohibit the OFAD
algorithm from solving for the truth.

Soon afterward, Davenport discovered the highly data-dependent nature of the OFAD poly-
nomial's similarity component (References 16 and 17). Therefore, even if the development
of undesirable similarity transformations when solving for distortion coefficients could be
prohibited, the solved-for coefficients could appear to have nonzero similarity terms when
applied to other data. This result emphasized further that tests of the validity of the OFAD
algorithm performed in isolation from the plate scale and alignment algorithms would not
be reliable, and therefore a full-scale simulation of all three algorithms was required to

demonstrate feasibility.

Two approaches to the constraint initialization problem developed. First, CSC recom-
mended that a simpler, more stable form of the OFAD algorithm, a mini-OFAD algorithm
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using ground-based data (Section 2.3.1), be developed in the hope that it could be used to
detect at an early stage any large biases in the prelaunch distortion coefficient estimates and
also be used to provide a more accurate initialization of the full OFAD algorithm. Section
3.4 describes the results of our tests using the mini-OFAD algorithm. The second approach
to the constraint initialization anomaly was Davenport's continuing efforts to improve on
the existing constraint formulation. Section 3.4 also discusses the new constraints he devel-
oped and their applicability to both the mini-OFAD and OFAD algorithms.

3.4 ALIGNMENT/ATTITUDE ERRORS IN MINI-OFAD ALGORITHM

The mini-OFAD algorithm iterates between the least-squares computation of the distortion
polynomial coefficients and the g-method calculation of a rotation error matrix. The algo-
rithm can perform the g-method calculation either before or after the least-squares calcula-
tion of the distortion polynomial, at user option. Initially, we conducted algorithm tests
with data-generator-produced input data that were corrupted by noise but contained no
alignment bias. When performing the least-squares calculation of the coefficients prior to
computing the rotation error matrix, the mini-OFAD algorithm determined coefficients to an
accuracy comparable with the amount of noise in the data and the error in the ground-
measured background stars. When the order was reversed, the rotation matrix determina-
tion picked up any rotational differences in similarity terms between the initial values of the
distortion coefficients and the true values of the distortion coefficients, resulting in a poor
solution. Therefore, for the first series of tests, as long as error matrix determination fol-
lowed coefficient calculation, the mini-OFAD algorithm performed well enough to provide
early bias detection capability and an accurate initialization for the OFAD algorithm. How-
ever, the addition of a simulated alignment bias (operationally, for mini-OFAD, an apparent
alignment bias could be generated by an alignment or attitude error) resulted in undesirable
coefficient perturbation. So although the mini-OFAD algorithm was rather insensitive to
noise, it unfortunately was highly sensitive to alignment biases or attitude errors, neither of
which was a problem to the OFAD algorithm, which uses such information only for aber-
ration calculations.

Davenport's modified constraints (Reference 18) provided the solution to the problems of
both algorithms. In his new constraint formulation, the distortion coefficients were con-
strained such that the similarity content of the distortion polynomial was required to remain
the same through all iterations of the OFAD algorithm. When applied to the mini-OFAD
algorithm, the constraints prohibited the coefficients from picking up an alignment bias
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and/or attitude error. When applied to the OFAD algorithm, the constraints prevented the
coefficients from modifying the similarity terms to provide a better fit to the noise. Initially
the constraints used fixed points outside the FGS FOV to maintain a constant similarity .
content. However, because of the data-dependent nature of the similarity components, the
use of actual measurement points as input to the constraints produced better results. All
OFAD and mini-OFAD runs performed in the feasibility study constrained the distortion
polynomial with measured star direction cosines. Implementation of Davenport's new con-
straints in both OFAD algorithms constituted the last major software enhancement requlred
to support the combined simulation effort.

4. FEASIBILITY STUDY

From February through July 1987, we conducted a feasibility study to test the combined
accuracy of FGS calibration parameters determined with the OFAD, plate scale, and FGS-
to-FGS alignment calibration software. The study required the simulation of a massive
quantity of FGS data that realistically modeled all conceivable sensor biases, telemetry
characteristics, and physical phenomena that could affect the in-flight calibration of the
FGSs. In addition, the unique characteristics of the FGSs and the unusually high accuracy
requirements placed on the calibration process necessitated considerable effort to determine
a successful operational scenario for utilizing available software calibration tools. This sec-
tion provides a detailed account of these activities.

4.1 DATA SIMULATION AND DATA REDUCTION ACTIVITIES

The OFAD feasibility study used a modified version of the PASS attitude simulation soft-
ware that enabled the realistic simulation of the most important aspects of the HST's FGSs.

4.1.1 Simulation Procedure

Our procedure for generation of data for the full-scale simulation was as follows. First, the
PICKLES program, developed by W. Jefferys, was executed to select an appropriate clus-
ter of stars for each observation set being simulated. Capabilities provided by this program
included shifting the FGS FOV and deleting any undesirable stars in the FOV. Input to this
program was the NGC 188 star catalog; output was the right ascension, declination, and
magnitude of each star chosen for the specific observing sequence. Using the MAC Termi-
nal utility program and the VAX screen editor, the output data file from PICKLES was
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transferred from the Macintosh personal computer on which the program had been exe-
cuted to the VAX 11/785; the file was then used as input to a utility program (developed
especially for the simulation) for creation of a NAMELIST for use by the PASS simulation

software.

Next, the simulator was executed to simulate the attitude profile (defining parameters that
have a first-order dependence on attitude) for the observation set and to create astrometry
and guide star files, and the data generated were used as input to the attitude simulator for
creation of OTA telemetry data. All attitude simulator executions were in batch mode; all
other executions were in interactive mode. The telemetry data generated were then used as
input to the PASS OTP for creation of an engineering data file. The engineering data file
contains attitude quaternion data, fine mode PMT counts, star selector angle data, and
engineering data status flags.

The OTA initial data reduction software (IDR) was executed to reduce the engineering data
file to the OTA prepared data file, and the prepared data file was then used as input to the
plate scale, mini-OFAD, OFAD, and FGS-to-FGS alignment calibration software. Finally,
all data created prior to initial data reduction were written to tape.

4.1.2 Errors and Biases

Each type of error and the magnitude of each error to be simulated were specified jointly by
CSC and P-E and then submitted to the OFAD technical team for comment. The major
sources of the errors simulated were as follows: initialization in the attitude simulator of the
distortion coefficients, plate scale values, offset and deviation angles, and FGS alignments;
FGS measurements; HST dynamics; and ground measurements of the star positions.

The distortion polynomial used in the attitude simulator executions was a 17-term
undistorted-to-distorted image space polynomial specified by P-E. The distortion poly-
nomial used in the IDR executions was a modified version of an 11-term polynomial pro-
vided by P-E; the distorted-to-undistorted object and image space coefficients used were
identical to those specified by P-E except for the X linear term in the X-polynomial and the
Y linear term in the Y-polynomial, which were modified to remove the effects of scale and

rotation.
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The P-E-specified discrepancy of no more than +2 percent in simulator versus IDR plate
scale values was adhered to in the simulation. The errors simulated in plate scale values
were between 1.0 and 1.4 percent depending on the FGS involved. Errors were also intro-
duced into the deviation and offset angles.

The discrepancies in alignment were computed using small-angle approximation. The error
in FGS-1 was computed with a pitch of 1.5 arc-seconds, a roll of -295 arc-seconds, and a
yaw of -0.5 arc-second. In both the simulator and IDR executions, FGS-2 and FGS-3 had
the same alignment. |

The FGS measurements were the second most important source of errors in the simulation.
The FGS fine error signal consists of measurements of the number of photons selected by
four PMTs and so is subject to Poisson statistics as specified by the square root of the
number of photons detected. The two sources of error in star selector angle measurement
were the 7-bit correction and the 14-bit correction. These corrections are due to mechanical
encoder errors. Both corrections were simulated. Only the 7-bit correction was compen-
sated for in the OTP to within +0.32 milliarc-second. The 14-bit correction is a time-
independent, low-frequency correction to the star selector angles of about 0.5 arc-second
that is not compensated for by the IDR or the OTP. However, because this is a low-
frequency correction, it can be compensated for using the distortion coefficients. All of the
fine error signals were adjusted for a background with the amount of light generated by a
20th-magnitude star in addition to the expected star.

An HST attitude error of 3 milliarc-seconds due to jitter was simulated, but no error due to
uncompensated rate gyro assembly drift was included. The stars in the guide star and
astrometry header data files generated by the profile simulator had random position errors
of 15 milliarc-seconds from their true locations in the sky.

4.1.3 Data Quantity

The full-scale data simulation was a massive effort requiring heavy use of computer re-
sources. For a single FGS, 17 observation sets were required for distortion coefficient
determination, 1 simulator execution was required for mini-OFAD calibration, and 3 sim-
ulator executions were required for plate scale calibration. An additional 10 executions
were required for FGS-to-FGS alignment calibration, for a grand total of 73. Each
observation set consisted of about 40 minutes of simulated data, for a total of
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2,920 minutes, or 4.9 hours. We used the observing sequence described in Section 1.2 for
the OFAD calibration.

4.2 DATA ANALYSIS SCENARIOS

Because each of the three FGS calibration functions (OFAD, plate scale, and FGS-to-FGS
alignment calibration) requires as input the output of the other two, an iterative procedure
among the three software modules is required to generate an FGS calibration parameter set
that meets the HST mission accuracy requirements.

4.2.1 Strawman Scenario

To provide a starting point for the feasibility study, P-E prepared a preliminary procedure
for calibrating the FGSs (Reference 19). This procedure was as follows:

1. Excluding the fifth-order distortion coefficients, iterate between the calibrated
plate method for plate scale calibration and the mini-OFAD algorithm for distor-
tion calibration until the change in the plate scale on successive iterations falls to
below 0.002 percent.

2. Perform a preliminary alignment calibration.

3. Solving for the full 11-term polynomial, iterate between the OFAD algorithm for
distortion calibration and the moving asteroid method for plate scale calibration
until convergence is achieved.

4, Calibrate the FGS-to-FGS alignment.
5. Iterate among the OFAD algorithm for distortion calibration, the moving asteroid

method for plate scale calibration, and FGS-to-FGS alignment calibration until the
alignment matrix changes on successive iterations by less than 0.2 percent.

In the course of performing the feasibility study, we discovered that a number of im-

provements to the strawman scenario could be made. Section 4.2.2 describes the final
calibration procedure used in the study.
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4.2.2 Final QOperational Sgenario

Using the P-E strawman scenario as a starting point, we gradually refined the scenario to
improve the accuracy and stability of the solution. The final procedure is described below.

First, as in the P-E scenario, an iterative procedure between the calibrated plate method for
plate scale calibration and the mini-OFAD algorithm for distortion calibration was
performed until the change in the plate scale on successive iterations fell to below 0.002
percent. In practice, this convergencc condition required four executions of the plate scale
software and three executions of the mini-OFAD calibration software. In each execution of
the mini-OFAD calibration software, three iterations between the least-squares computation
of the coefficients and the g-method computation of the rotation error matrix were
performed. In the least-squares distortion coefficient computation, three to six iterations
were usually performed (on the third cycle with the g-method, at least six iterations were
always performed). As in the P-E scenario, no fifth-order coefficients were solved for. In
earlier test results, the solution appeared to be somewhat unstable when fifth-order
coefficients were included. Because the initial estimates of the linear coefficients (a, g in
the X-polynomial and by ; in the Y-polynomial) did not satisfy Davenport's constraint for
these terms (Reference 18), both linear coefficients could not be determined (using this
constraint) without displacing the coefficients from their initial values by a large amount.
Instead, the a,  coefficient in the X-polynomial was determined, whereas the by ; coeffi-
cient in the Y-polynomial was held constant. The remaining coefficients (i.e., the three
quadratic and four cubic coefficients) in the standard 11-term polynomial were determined.

After the iterative procedure between the calibrated plate method and the mini-OFAD algo-
rithm converged, a preliminary alignment was determined. Because a complete set of FGS
calibration parameters was then available, the goodness-of-fit utility was executed. Of
course, in a real operations situation, where the truth is unknown, the goodness-of-fit util-
ity is not usable. The preliminary alignment was used for accuracy checking only; it was
not used to initialize the OFAD algorithm or the moving asteroid method. The output from
the calibrated plate method and the mini-OFAD algorithm were, however, used to initialize
the moving asteroid method and the OFAD algorithm.

Next, an iterative procedure between the moving asteroid method and the OFAD algorithm

was performed until convergence was achieved. The convergence criterion selected was
that the change in the plate scale on successive iterations be no more than 0.00001 percent.
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In a departure from the P-E approach, an asteroid plate scale was determined to initialize the
OFAD algorithm. For the OFAD algorithm executions, the full set of 11-term polynomial
coefficients, except for the by ; coefficient in the Y-polynomial, were determined. As in the
case of the mini-OFAD algorithm executions, the by ; coefficient in the Y-polynomial was
held constant to avoid a conflict with the requirements of the associated constraint. Also,
the B deviation angle and the B offset angle were determined. Solving for more than one
deviation or offset angle in a single execution resulted in erratic displacements of the
solved-for direction cosines (Section 5.1). Satisfaction of the convergence criterion
required four executions of the moving asteroid plate scale calibration software and three
executions of the OFAD algorithm. In one execution of the OFAD algorithm, six iterations
were usually performed. At the end of each plate scale calculation using the moving
asteroid method, the most recent OFAD algorithm and moving asteroid plate scale solutions
were checked for consistency using the mini-OFAD algorithm. Unlike the goodness-of-fit
utility, the mini-OFAD algorithm can be used to check the consistency of the OFAD
algorithm solutions even in an operational setting. However, the goodness-of-fit utility was
used in the feasibility study to check the accuracy of the OFAD algorithm solutions on an
intermittent basis. The last step of the scenario was to perform an alignment calibration. It
was determined that because the OFAD algorithm and the moving asteroid method are
relatively insensitive to alignment errors, no iteration among the OFAD algorithm, the
moving asteroid method of plate scale calibration, and FGS-to-FGS alignment was
required. The final parameter set was consistency checked with the mini-OFAD software
and accuracy checked with the goodness-of-fit utility.

5. RESULTS OF FEASIBILITY STUDY

In addition to achieving the study's primary objective of demonstrating feasibility, we also
discovered many useful techniques for improving the stability and accuracy of the OFAD

solution.
5.1 QUALITATIVE RESULTS

The feasibility study provided an excellent opportunity to test the behavior of the OTA
algorithms using realistically simulated data with different combinations of state vector ele-
ment sets and constraints. The most important discovery was the high sensitivity of both
the mini-OFAD and OFAD algorithms to bad data points. As part of the simulation, a star

observation was produced with an erroneous 14-bit correction and a consequent error of
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approximately 0.5 arc-second. Even using the mini-OFAD algorithm, which is more stable
than the OFAD algorithm, this single bad data point out of 38 data points resulted in a level
of data degradation sufficient to produce an unacceptably high error in the solved-for poly-
nomial. Considerable effort was required during the study to detect and identify bad data
points. In response to this problem, we proposed the enhancement of all the OTA algo-
rithms to include a more sophisticated data validation capability and a series of statistical
summary displays to display the vector of conditions and other large arrays. Such sum-
mary displays would identify which stars/observation sets constitute the poorest fit to the
current distortion polynomial values without requiring the operator to page through an im-
practically large number of array elements and visually identify the outliers. These enhance-
ments were implemented in the PASS OFAD software after the completion of this study.

One expected prbblem experienced during the study was some instability when solving for
fifth-order coefficient values. To minimize the impact of the instability, the fifth-order terms
were held constant in the mini-OFAD algorithm. This helped the mini-OFAD algorithm
solve for stable, accurate polynomial coefficients. Having been initialized with a reliable
distortion estimate, the OFAD algorithm had no difficulty solving for the fifth-order terms
when a higher accuracy solution was required. We believe that some additional improve-
ment could be achieved if better numerical scaling of the coefficients were added to the
OFAD algorithms. The improvement of the numerical scaling is currently being studied.

We observed a new, unexpected instability in the first set of mini-OFAD algorithm execu-
tions. All the solved-for distortion coefficients (one linear in the X distortion polynomial,
three quadratic in X and three'in Y, and four cubic in X and four in Y) moved by unre-
alistically large amounts from their initial estimates during the first least-squares computa-
tion before the Euler angle calculation with the g-method. This effect was most observable
in the linear term and was amplified when, in test executions, fifth-order terms were deter-
mined. Upon recomputation of the coefficients following Euler angle calculation, consid-
erable recovery of the solution occurred, although a larger-than-expected displacement of
the solution from the initial estimates remained. Further, but not complete, recovery was
achieved on iteration with the plate scale calibration software and upon refinement with the
OFAD algorithm. There is currently no explanation for this phenomenon, but this particular
instability apparently (on the basis of the calculated accuracy of the solution (Section 5.2))
caused no lasting damage.
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We executed the OFAD algorithm numerous times to solve for different combinations of
offset and deviation angles. The more parameters solved for, the greater the displacement
of the solved-for star direction cosines from their initial estimates. In solving for two devia-
tion angles and one offset angle, the shift in the star direction cosines was as much as 1 arc-
second even though the accuracy of the mini-OFAD distortion estimate was expected to be
no worse than about 20 milliarc-seconds. The standard parameter set was one deviation
angle and one offset angle. For such cases the maximum displacement of direction cosines
was between 0.2 and 0.5 arc-second. Although no degradation in the achieved accuracy
was observed (Section 5.2), such a large movement in the star field is quite unsettling. The
reason for the displacement could be nonutilization (during the feasibility study) of the old
constraints on the direction cosines (Section 3.2). These constraints might, in conjunction
with the new constraints on the coefficients used during the study (Section 3.4), provide
for an accurate, stable solution without unrealistic displacement of the state vector's non-
calibration elements. Since completion of the study, the additional four constraints have
been added to the PASS OFAD software.

5.2 QUANTITATIVE RESULTS

The primary reason for conducting this study was to determine if, with a proper operational
scenario, the three FGS calibration algorithms (plate scale, OFAD, and FGS-to-FGS align-
ment calibration) could determine an FGS calibration parameter set of sufficient accuracy to
meet HST mission requirements. As shown in Table 1, for the standard 11-term poly-
nomial case, the accuracy of an FGS relative to itself (i.e., the combined accuracy of plate
scale and OFAD parameters) was always below 1.5 milliarc-seconds, as against an accu-
racy requirement of 3 milliarc-seconds. The accuracy of either FGS-1 or FGS-3 relative to
FGS-2 (i.e., the combined accuracy of the plate scale, OFAD, and alignment parameters)
was less than 3 milliarc-seconds, as against an accuracy requirement of 5 milliarc-seconds.
Furthermore, the error in inverting the solved-for polynomial for onboard use was negli-
gible. These results are outstanding and provide good reason for optimism about the prob-
ability for success of the in-flight calibration activity.

Results achieved using a 17-term polynomial (adding in the linear cross-term and the 5
fourth-order terms) were similar to the 11-term polynomial results, with one major excep-
tion. The inversion error when transforming a 17-term distorted-to-undistorted object space
polynomial to an 11-term undistorted-to-distorted object space polynomial was much
higher than when inverting the 11-term distorted-to-undistorted object space polynomial.
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Table 1. OFAD and Mini-OFAD Algorithm Accuracies

Mean FGS -1 Mean FGS-2 Mean FGS-3
(mas) (mas) (mas)
CONDITIONS
wit wit i wit . wrt wit )
FGS-1 FGS-2 Inversion FGS.2 Inversion FGS3 FGS2 Inversion

OFAD:17TERMS.OB,88 1.01+08 | 20x14 1.2+£1.0 0.5+0.4 12412 1.7+£09 25%1.8 77155
OFAD: 11 TERMS, 0g, -88 0807 | 23417 | 0.03£0.01]| 0.7+07 | 0024001 | 1.1£0.7 21+1.6 ] 0.0410.02
MINI-OFAD: 17 TERMS 10.3+14.0 NA - 3.0£34 53+%4.1 23+£15 |21.81+169 NA 13.5+8.0

MINI-OFAD: 17 TERMS . - | 9.8110.5 NA 0.07+£0.04 } 40+33 | 0.10+£0.06 |37.1+29.5 NA 061 +0.47

NOTE: mas = milliarc-second
wrt = with respect to
N/A = not applicable

For FGS-3, the inversion error was greater than the total error budget. We determined the
major contributor to the inversion error to be the linear cross-term. Provided the distortion
encountered in flight contains no components that are best modeled by linear cross-terms,
solving for the standard 11-term polynomial in flight should be no problem.

Table 1 also specifies the accuracies of the mini-OFAD solutions (in conjunction with
asteroid-method-computed plate scales) used to initialize the OFAD algorithm computa-
tions. For FGS-1 and FGS-2, the accuracy of the calibration of the FGS relative to itself
was about 10 milliarc-seconds or better. Because the expectation had been that the mini-
OFAD algorithm would calculate distortion coefficients accurate to about 20 to 30 milliarc-
seconds (largely due to error in the reference vectors), the accuracies achieved with FGS-1
and FGS-2 were surprisingly good. In fact, for FGS-2, the accuracies with the mini-OFAD
algorithm almost met the 3-milliarc-second mission requirement. For FGS-3, the accuracies
(relative to FGS-3) were much worse, due to the presence of additional bad simulated data
points. However, even with FGS-3, the approximate distortion values supplied by the
mini-OFAD algorithm provided the OFAD algorithm with a sufficiently accurate initializa-
tion to allow the latter to compute coefficients accurate to better than 3 milliarc-seconds. In
addition, the errors experienced when inverting mini-OFAD solutions followed the same
pattern as with OFAD solutions, i.e., the inversion errors for the 11-term polynomial were

small, but the errors for a 17-term polynomial were unacceptably large.
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6. CONCLUSIONS

We believe that our study of FGS calibration accuracy demonstrates that the current
versions of the PASS plate scale, OFAD, and FGS-to-FGS alignment calibration algo-
rithms are capable of meeting the HST mission's very stringent accuracy requirements,
provided the actual distortion encountered in flight can be represented with the current P-E
11-term polynomial. In particular, it is essential that the distortion encountered in flight
not contain any components best modeled by linear cross-terms, because no such terms are
present in the current 11-term model. Should any linear cross-terms or other important,
unrepresented terms be present, the PASS software has the capability to solve for a larger
polynomial including the extra terms, but the flight software's inverse polynomial is limited
to 11 terms. The study did not obtain an accurate inversion from a larger, more general
polynomial to the standard 11-term polynomial within accuracy limits. Therefore, to the
extent that the distortion simulated in this study resembles the real distortion that will be
encountered in flight, the study shows the OFAD algorithm to be adequate to support HST

launch.
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ABSTRACT

An optimal algorithm for the in-flight calibration of spacecraft gyroscope systems is presented.
Special consideration is given to the selection of the loss function weight matrix in situations in
which the spacecraft attitude sensors provide significantly more accurate information in pitch and
yaw than in roll, such as will be the case in the Hubble Space Telescope mission. The results of
numerical tests that verify the accuracy of the algorithm are discussed.

L. INTRODUCTION

A spacecraft gyroscope system, sometimes referred to as the rate gyro assembly (RGA), is used
to measure angular rotation rates of the spacecraft. This is required for proper control of the
spacecraft, particularly for the proper positioning of spacecraft sensors with respect to desired
targets. We present here an algorithm for RGA calibration that was used for the High Energy
Astronomy Observatory (HEAO) missions and enhanced for use in the Hubble Space Telescope
(HST) mission. Section II of this article presents the basic algorithm; Section 111, the statistical
weighting scheme; Section IV, the results of numerical tests of the algorithm; and Section V, our

conclusions.
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II. BASIC RGA CALIBRATION ALGORITHM

Any RGA must be composed of at least three gyroscopes whose axis directions taken together
completely span the space of possible rotations (i.e., pitch, roll, and yaw). An RGA consisting of

K gyros produces as output a response "vector" R = (r;, 1,, ..., rK)T, where r,_is the response of
the kth gyro. The response vector is translated into a measured angular velocity, €, , of the space-

craft (in the spacecraft frame) via the relation

M
where G, is the RGA 3-by-K scale factor / alignment matrix, and D) is the RGA drift rate bias.

If G, and Dy, deviate from their true values, because of either poor initial calibration or temporal

changes of the RGA, then Q,, will deviate from the true angular rate, Q. The goal of the algorithm

is to determine correction matrices M and d that may be applied to G, and D, so that a modified

equation (1) will yield the true angular rate:

G =MG,, (2a)
=MD, + d, (2b)
Q=GR-D=MQ, -d. (20)

The angular rate deviation, w, between the measured and true rates is given by

o =0,-Q=-mQ,+d, 3)

where m =M - I, and I is the identity matrix. The algorithm will solve for m and d. The cor-
rection matrices m and d are dimensioned 3-by-3 and 3, respectively; we emphasize this because it
ties directly to the fact that the algorithm being developed here provides correction information for
the RGA as a whole in its capacity as a device for measuring three-dimensional angular motion.
Unless the RGA under consideration consists of only three gyros, m and d will not contain suffi-
cient information to allow separate calibration updates of scale, alignment, and drift for the indi-

vidual gyros.
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We wish now to relate the angular rate deviation as integrated over some calibration maneuver to
the difference in attitude changes as determined for the maneuver by the RGA and by some inde-
pendent attitude sensing devices (e.g., fixed-head star trackers). This derivation is conveniently
done using quaternion notation; see Reference 1 for a discussion of the mathematics of quaternions.
First, an expression for the time derivative of a quaternion is required. If Q(t) is the quaternion
representing spacecraft attitude at time t, then the quaternion representing a change in attitude over a
time interval At is given by Q-1(t) Q(t+At). If Atis small, the attitude change may be expressed as

Q) Q(t+AY) = 1+ q(QAY2), ~ 4

where 1 is the identity quaternion, and q(Q2At/2) is a differential quaternion with vector component
QAt/2 and scalar component zero. Defining AQ(t) as Q(t+At) - Q(t) and combining this defini-
tion with equation (4) yields

AQ(M) = Q1) q(QAL2) . (5)

Dividing equation (5) by At produces the desired quaternion time derivative, Q'(t):

QM = AQM/At = Q1) q(€2/2). (6)

Equation (6) applies as well for the quaternion time derivative corresponding to the attitudes as

measured by the RGA, with subscript M placed appropriately.

Next, the time derivatives specified above are used to construct the time derivative of the attitude
error quaternion and the definite integral of that quaternton over the time of the maneuver. The
attitude error quaternion, 8Q, is defined as

Q = QM ( QM'I Q) QM'1 =Q QM'l s 7

which is a quaternion expressing a rotation from the RGA-determined postmaneuver attitude to the
true postmaneuver attitude, transformed to the premanuever reference frame. It follows by the

chain rule of differentiation that
Q' =Q (IM'1 +Q Q'M'l (8a)
= QqQ2) Q! + Qq(Q,/2) Qy!. (8b)
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Combining equation (8b) with the relations ® = QM -Q and q‘l(QM/2) = q(-QM/2) produces

5Q' = Q q(-w/2) Q! . &)

Integrating both sides of equation (9) over the maneuver yields
50-1 = [Qaco @y at 10)

where the constant of integration (i.e., the identity quaternion) is removed from 8Q because the

integral in equation (10) is a definite integral. The attitude error quaternion can be expressed in

terms of the rotation Qg,1 Q, from the first reference attitude to the second (i.e., as determined

using the attitude sensors against which the RGA is being calibrated) and the rotation Qg1 Qg,
between the first RGA-propagated attitude and the second. Equation (10) thereby becomes

Qr; " Qry) Q' Qgp) - 1 = JQacom Qy! dt . (11)

No approximations have been made in the derivation to this point. We now make two approxi-
mations, each of which is accurate to first order in the error. First, Q, is substituted for Q in the

integrand in equation (11). This substitution yields

Qe Q) Qe Q) - 1 = [ Qa2 @t dr . (12)

The integrand in equation (12) is simply the quaternion representation for a rotation of the vector
-/2 through a rotation defined by Q,, i.e., the rotation that transforms -0/2 from spacecraft

coordinates at time t to spacecraft coordinates in the premaneuver reference frame. Equation (12)
can therefore be written in matrix notation as

Z, =-112 ITi o dt (13a)
= 12 J-Ti(m Q - d)dt, (13b)

where Z, is the vector component of 3Q, T is the matrix for transforming vectors to premaneuver

spacecraft coordinates, and i is a subscript designating maneuver number. The second
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approximation is made implicitly in the definition of Z, as the vector component of 6Q;; the fourth
component of 8Qi, which is actually equal to the cosine of the error rotation angle, is approximated
as equal to 1. Because of the two approximations made in going from equation (11) to (13b), the
calibration algorithm described here will be inherently iterative; the vector Z, and matrix T, must be

reevaluated on each iteration.

Equation (13b) is linear in the unknowns m and d and thus lends itself naturally to standard
least-squares techniques. First, the matrix equation that represents equation (13b) applied to N
calibration maneuvers is written as

Z = Hx, (14)

where Z and the state vector x are defined via

Z ={ZT,2,7,., 2 )7, (15)

_ T
x = 1/2{m, m, my, My, My,, My, My, M3y, My3, dy, dy, dy )7, (16)

and H is a 3N-by-12 matrix of the form
H =} : S 17)

Each U, is a 3-by-9 matrix, the components of which are given by

Uikasan)i = I (Tj; (€, dt, (18)
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and each Y, is a 3-by-3 matrix with components

(Y;3); = f(Tjk)i dt. (19)

The least-squares solution for the state vector x in equation (14) minimizes the linear Bayesian

weighted least-squares loss function, J, given by
J=12[ETWE + (x-x,)TS, (x-x,)1, (20)

where

E=Z-Hx, 21

W and S, are symmetric nonnegative definite weighting matrices, and x,, is an a priori estimate

of x. The desired solution for x is given by
x = (HTWH+S,) ! (H'WZ + S,x, ). (22)

Equations (20) and (22) include S, and x, for mathematical completeness. In what follows, we

will assume S, = [0], i.e., no a priori knowledge of x. In applying equation (22) to determine x,
it is clear that at least four calibration intervals are required and at least three of these must span the
space of possible rotations. An acceptable minimum set of calibration intervals would be one
maneuver each of pitch, roll, and yaw, together with a period of constant attitude to define the drift
rate bias. In selecting calibration maneuvers to be used for the algorithm, a user should be aware
that, at least in the equations specified above, a rotation of greater than 180 degrees is indistin-
guishable from a smaller rotation in the opposite direction. The use of such large rotations could
lead to errors in the calibration and should therefore be avoided. The basic algorithm being dis-
cussed here lends itself easily to being broken into two separate algorithms, one to determine the
scale factor / alignment portion of x and a separate one to determine the drift rate bias.
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II1. SPECIFICATION OF THE WEIGHT MATRIX

In principle, the specification of the weight matrix W in equation (22) depends on the scale size
of random errors associated with the RGA itself, as well as the errors associated with the deterrhi—
nation of reference attitudes. In practice, random errors associated with the RGA tend to be much
smaller than those of the reference attitude sensors. This is true in particular for the sensors used
for the HST mission. The HST uses two types of sensors for high-accuracy attitude determination:
fixed-head star trackers (FHSTs) and fine guidance sensors (FGSs). The three FGS fields of view
are clustered tightly (within 14 arc-minutes) about the principle axis of the spacecraft (hereafter
called the V1-axis). When calibrated, the accuracy of the FGSs should be better than 0.010 arc-
second. In most circumstances, however, their effective accuracy will be limited by the accuracy of
the reference star catalog against which the FGS observations are compared during attitude compu-
tation; this will be about 0.3 arc-second. Because of the tight clustering of the FGSs about the
V1-axis, this accuracy of 0.3 arc-second pertains only to the pitch and yaw components. The roll
accuracy is determined by the accuracy of the FHSTs, whose fields of view are more widely
distributed in direction about the spacecraft than those of the FGSs. The accuracy of the FHSTs
used for the HST is about 10 arc-seconds. The fact that the reference attitudes for the HST are
substantially better in pitch and yaw than in roll presented a special problem for the HST ground
software. For spacecraft that have equal attitude accuracies about all axes, setting the weight matrix
in equations (20) and (22) to the identity matrix, i.e., treating the accuracies of all components of all
maneuvers as equal and uncorrelated, would be legitimate. This is not the case for the HST; conse-
quently, significantly improved results for HST RGA calibration can be expected if a proper weight
matrix is used. The need for a proper weight matrix is enhanced by the possible requirement to
combine data sets for maneuvers in which some of the attitudes were determined using only FHSTs
or only FGSs. This possibility arises because of potential sensor occultation by the Earth during
parts of the spacecraft orbit.

The net effect of the considerations discussed above is that the simple product ET E (E defined in
equation (21) ) does not represent a squared sum of normalized, independent random variables as is
required for an optimized least-squares loss function (e.g., see Reference 2). The determination of
W depends upon the measurement uncertainties of the components of E, both in magnitude for the
individual components and in any correlation of errors between the individual components. The

3N-vector E is composed of N 3-vectors, the relation being
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E = ( elT, ezT, ees g eNT )T N (23)
where e, is the error associated with the ith calibration maneuver. If the errors for the maneuvers

are assumed to be independent, then W can be represented as a block diagonal matrix, with each

block being a 3-by-3 matrix, w;. The loss function becomes

J

z ji ’ (24a)
12 ¢Tw, e . (24b)

Ji

The assumption is not strictly valid in cases where the same attitude data are used at both the end
of one maneuver and the beginning of another. In such cases W would appropriately contain
elements representing a cross-correlation of errors between maneuvers. Because this complication
is both awkward to include computationally and of substantially smaller effect than that of the
accuracy asymmetries in attitude produced by the use of FHSTs and FGSs together, we will
neglect it. We will also make use of the fact that the random RGA errors are negligible when
compared with the reference attitude errors. For notation simplification, hereafter we will suppress
the subscript i (for maneuver number) unless it is explicitly required.

Using the approximations described above, the components of e may be written as

where a, is the premaneuver attitude determination error about the jth spacecraft axis, b, is the
postmaneuver error about the kth axis, and is ty the (j,k) component of the postmaneuver-attitude-
to-premaneuver-attitude transformation matrix. The numbers a,, a,, a5, b,, by, and b; may be

assumed to be independent random variables, but the numbers e,, €,, and € will in general be cor-
related because of the mixing of the postmaneuver errors via the maneuver transformation matrix.

For cases where the a; and b, are all approximately equal (as would be true for attitudes determined
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using a number of well-separated sensors of equal accuracy), the correlation between the compo-
nents of e would be small because of the combining in each of a number of random variables in

different ways. Here, however, we are particularly interested in contexts where a; and b, (the roll
errors) are large compared with a,, a3, b,, and b;. For such cases a maneuver with significant

components about all axes will have errors given to first order by

e, = a + t;; b + OO, (26a)
e, = t by + O, (26b)
e; = t33 b, + O() , (26¢)

where 8 is a generic random variable with variance like that of a,, a,, b,, or b,. The correlation,

particularly between e, and e, is clear. The goal now is to construct from the components of e

three independent, normalized random variables that may be used in defining a least-squares loss
function. The components of the weight matrix w can then be solved for by setting this new loss
function equal to 1/2 (eT we). For this derivation we will consider two cases: (1) where the

s onifi i 2G 2 2 2¢. 2 2
maneuver has a significant nonroll component (i.e., t G~ > O and/or ty; Oy, 2 > 05
where Gblz and 682 represent the variances of b, and 0, respectively) and (2) where the maneuver
; ; ; 2 2 2 2 2 2
is essentially pure roll (i.e., t);* G, ,* <Oy" and t3,°G,,* < G5).

In case 1 (a maneuver with a significant nonroll component), the quantities €, € and €5 may be

used to construct three essentially independent random variables <a,;>, <b,>, and ¢, where

<a;> and <b,> are estimators of a and bl, and c is a variable with variance like that of §. We

specifically construct ¢ to eliminate the large roll errors:
c = t31 € - t21 63 . (27)
The variance of ¢ over an ensemble of maneuvers is given by

var { t,€, - b €5} (28a)
= (15,2 C; + 1,2 G3) 052, (28b)

G2

c
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N
It

1+ 1,2 + 1,2, (29a)
Cy =1 + t3p2 + t352. (29b)
We construct <b,> to be a good estimator of b;:
<b> = [4,2/ (2 +t332) e/ tyy ) + [1432/ (2 +1312) ] (&5/ 15 - (30)
The quantities e,/t,; and e,ft;; estimate b; to within d/t,, and d/ty;, respectively. The

quantities in brackets are normalized weights inversely proportional to the square of the uncertainty

of the corresponding estimate. For convenience we rewrite <b,> as

<b,> = B, e, + B; e;, (31)
where

B, =ty / (12 +42), (32a)

B, = t3; / (,,2+152). (32b)

The variance of <b,> overan ensemble of maneuvers can be shown to be

64,2 = Oy2 + (B2 C, + By Gy)og. (33)

The variance of <b,> increases as the maneuver approaches being pure roll; if t,,%0,,2 =

2¢ 2 = 5.2 2 = 2 — 2 EFi
3;°C,,° = Op , then O 1% = (1+C, /4 + Cy/4 )csbl = 20b1 . Finally, we construct

<a;> to be a good estimator of a;:

<a> = e, -t;; <b> = ¢ - Aye, - A; e, (34
where

A, = t; By, (352)

A; = t, B;. (35b)
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The variance of <a,> over an ensemble of maneuvers can be shown to be

2 = 0,2 + (42 + 152+ Ay Gy + Ay C3)062. (36)

c<a1>

The variance of <a,> also increases as the maneuver approaches being pure roll; if t,,2c, 2 =
ty,%0,,2 = ()'8 , then 0<a1>2 =0,2+ (C/4 + C/4)o0, bl = °a12 + ©,,2 Although

<a, >is defined using <b,>, it is specifically tailored to remove the correlation with b, frome;.
To lowest order <a;>=a,, <b;>=b,, and c =1(a,, a5, b,, b;), from which it is clear that
<a;>, <b,;>, and c are essentially independent. To find expressions for the weight matrices w,

we construct a loss function from the squared sum of <a;>, <b,>, and ¢ after normalization and

set it equal to the original loss function, i.e.,

2j =efwe = c/o2 + <bp>?/o_ 2 + <ap?/o_ 2. (37)
The corresponding elements of w are

wy = /0.2, (38a)

Wy = A2/o_ .2 + By2/o,, 2 + 1,2/ 02, (38b)

Wi = Ag?/0 2 + B2 oy, 2+ 4%/ o2, (38¢)

W13 = W31 = ’A3 /o<al> 3 (386)

Wy = Wiy = AjA3/0_, 2 + B,B;/co + tyty,/ 62, (38f)

<b1>

In case 2 (an essentially pure roll maneuver), the components of e can be expressed as

e, = & + by, (39a)
e, = a, + ty;b, + (cos 6) b, + (sin 6)b,, (39b)
e; = a3 + ty;b; - (sin 6) b, + (cos8)bs, (39¢)
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where 0 is the roll angle. Because b, and b, are assumed to have equal variance, the variables

r, and r_, defined as

(cos9) b, + (sin 0)b,, (40a)
- (sin 6)b, + (cos0)b,, (40b)

I

T

are independent random variables with the same variance 0'82. The components of e are therefore

of the form
€ = a; + by, (41a)
e, = I, + t),; b, (41b)
e; = 13 + t3, b, (41c)

where r, and r; are independent random variables with variance 2052. The components of e
are mildly correlated via b;; b, contributes half of the variance of ¢, and at most one-third of the
variances of e, and e, (for t,,2 = t;,2 = 0’82 / Gblz ). We neglect this mild correlation for

maneuvers that are essentially pure roll by treating them as exactly pure roll, i.e., by setting

ty; =t3; = 0. The weight matrix elements that follow from this assumption are

wy = 1/(0,% +0,,2), (42a)
Wipg = Wy = Wy = W3y = W3 = Wy = 0. (42c)

The equations specified above provide the functional relationship between the elements of w and
the uncertainties in attitude determination with respect to the spacecraft axes. These uncertainties
can be derived from the attitude covariance matrix (e.g., see Reference 3), given by

P = c2[I -X (c2/02)V,VT]! 43)
k=1,n
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= number of measurements,

e = uncertainty of kth measurement,
2

n
V, = kth star vector used for attitude determination, as expressed in the spacecraft frame,
C,

Gt

[Z(o2)! ]!

For spacecraft such as the HST, whose sensor orientations allow attitude determinations with
uncorrelated estimates of pitch, roll, and yaw, the diagonal elements of the matrix P may be used as
the attitude error variance required in the expressions for the elements of w.

IV. NUMERICAL TESTING

The scheme specified above for applying statistical weights to RGA maneuver data has been
implemented in the Payload Operations Control Center (POCC) Applications Software Support
(PASS) system to be used in support of the HST mission. As indicated at the end of Section II, the
algorithm was implemented in a way that allows independent calibration of the RGA scale factor /
alignment and the RGA drift rate bias. RGA, FGS, and FHST data appropriate for a number of
different calibration intervals were generated using the PASS attitude simulator (this is a simulator
that produces data like that expected from the HST). The FGS and FHST errors were of order 0.5
and 10 arc-seconds, respectively. The data consisted of nine independent 90-degree maneuvers
(three each of pitch, roll, and yaw) and one extended period of constant attitude data. The
90-degree maneuvers would require approximately 16 minutes of spacecraft time, whereas the
constant attitude data represented approximately 45 minutes of spacecraft time. These data were in
turn processed through the PASS attitude determination and RGA calibration software. Final
residuals were calculated for each maneuver component by comparing the RGA-measured
maneuver with the "true" maneuver as supplied to the simulator. The results were good. The final

residuals for the components of E were in magnitude appropriate for the sensor type governing

those residuals (e.g., €, for a pure pitch maneuver was in size like the simulated FGS errors,

whereas €, was like the simulated FHST errors). Furthermore, the scheme described above allows
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for the combining of data sets in which different attitudes were determined with various different
sensor combinations (i.e., FHST and FGS, FHST only, and FGS only). To test this aspect, we
processed our simulated data through two RGA calibration scenarios: (1) with both FHST and
FGS data used for all attitude determinations and (2) with each maneuver processed twice, once
with FHSTs only and once with FGSs only. The final accuracy of the RGA calibration was
essentially the same for both scenarios. For the nine-maneuver simulation, the largest deviation
(when comparing the measured maneuver magnitude after calibration with the true maneuver
magnitude) was found to be about 30 parts per million. This is both appropriate for the magnitude
of the sensor errors and sufficiently accurate to support the needs of the HST mission.

V. CONCLUSIONS

We have presented a general algorithm for the calibration of a spacecraft rate gyro assembly, as
well as a data weighting scheme that produces a statistically optimal solution. The weighting
scheme, although explicitly tailored for use during the Hubble Space Telescope mission, is
applicable to any three-axis stabilized spacecraft. Numerical simulations demonstrate that the
algorithm works as expected in theory and is capable of supporting the needs of the HST mission.

The work reported in this article was supported in part by NASA contract NAS 5-26685 for the
development of ground support software for the Hubble Space Telescope mission.
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Abstract

Recently, a novel strategy for post-experiment state estimation of discretely-measured dy-
namic systems has been developed. The method accounts for errors in the systemn dynamic model
equations in a more general and rigorous manner than do filter-smoother algorithms. The dynamic
model error terms do not require the usual process noise assumptions of zero-mean, symmetrically
distributed random disturbances. Instead, the model error terms require no prior assumptions
other than piecewise continuity. The resulting state estimates are more accurate than filters for
applications in which the dynamic model error clearly violates the typical process noise assump-
tions, and the available measurements are sparse and/or noisy. Estimates of the dynamic model
error, in addition to the states, are obtained as part of the solution of a two-point boundary value
problem, and may be exploited for numerous reasons. In this paper, the basic technique is ex-
plained, and several example applications are given. Included among the examples are both state
estimation and exploitation of the model error estimates.
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1.0 Introduction

A large number of applications exist in the general area of “post-experiment” or “post-
flight” estimation, wherein estimates of the state histories of a dynamic system are obtained using
an assumed state dynamic model and sets of discrete measurements. In general, both the assumed
model and the available measurements are imperfect. The motivation for applying an “optimal
estimation” algorithm is to combine the model output with the available measurements in such
a way as to obtain estimates of the state histories which are superior to both the model and the
measurements, and, in addition, satisfy an optimality criterion. In this paper, a new estimation
strategy is described which includes both a new optimality criterion and a new algorithm for
obtaining estimates based on this condition.

The following generic problem statement for post-experiment estimation of a dynamic pro-
cess is used to motivate the discussion. Given a system whose state vector dynamics is modeled
by the (linear or nonlinear) system of equations,

z= I[g(t)aﬂ(t), t] (1)
where
z =n X1 state vector
f =n x 1 vector of model equations
u =p X 1 vector of forcing terms,

and given a set of discrete measurements modeled by the (linear or nonlinear) system of equations,

F(te) = g, [z(te) te) + v 5 kB = L,.om (2)

where
g(tk) = r X 1 measurement set at t

g = r X 1 measurement model equations

m = total number of measurement sets

<

x =T X 1 measurement error vector,

and vy is assumed to be a zero-mean, gaussian random sequence of known covariance Ry, determine
the optimal estimate for z(t) (denoted by £(t)), during some specified time interval tq < t < ty.
Clearly, the definition of optimal is subjective, and we begin by discussing optimality criteria.

2.0 Optimality Criteria

The typical approach for obtaining an optimal estimate of the system state trajectories is
the minimization of a function of the estimate error,

e; = E{(z - z)} (3)

or its covariance,

Pis = E{(2 - z)(2 - 2)"} (4)

Among these criteria are the well-known “maximum likelihood” and “minimum variance” strategies
(e.g., Gelb!). For example, the minimum variance criterion requires the minimization of the trace
of Pz;z. Many other criteria which rely on estimating the estimate error statistics (Egs. (3), (4))
have also been used as bases for estimation algorithms. A practical problem arises during actual
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implementation of these methods. In order to determine the estimate error statistics, it is necessary
to assume that any errors in the system model Eq. (1) are noise of known probability distribution.
Most often, the probability distribution is assumed to he zero-mean gaussian, whose covariance
is treated as a known quantity (“process noise”). The state estimation proceeds without any
adjustment to the system model equations.

In general, it is difficult, if not impossible, to rigorously justify process noise assumptions for
the model error. For real physical systems, error is likely to be due to modeling simplifications such
as linearization, neglect of higher-order terms, etc., or, perhaps, just plain ignorance. Many of these
likely sources are deterministic and non-zero mean. Consequently, the estimate error statistics in
Egs. (3) and (4) cannot be calculated rigorously. Estimates based on their optimization are sub-
optimal, e.g., the minimum variance estimate is not truly minimum variance if the variance which
1s minimized is not the true variance.

These observations are well-known and are repeated here only to motivate the discussion.
The optimal estimation strategies which require process noise assumptions work well in many
applications, whether or not the model error assumption is justifiable, and filter algorithms are
the most commonly used estimators in practice. The filters must generally be artistically “tuned”,
but this is often possible and sufficient for a reasonably accurate estimate.

However, filter accuracy may deteriorate substantially under a number of conditions. The
filter algorithms rely on the integration of the original dynamic model Eq. (1) for the between-
measurement estimate. If the model is poor and the measurements are sparse, the accumulated
integration error between measurements may become very large. Even if the measurements are
dense, if they are particularly noisy, and the model is poor, then the filter estimate may be of
poor accuracy. Under certain conditions, the filter may become unstable. Divergence of filters
when process noise assumptions are violated may be found in Fitzgerald?, Huber®, and Breza and
Bryson*, among others.

With this motivation, Mook and Junkins® developed a new estimation strategy which elim-
inates any aprior: assumptions about the model error except that it is continuous between the
measurement times. The method, called Minimum Model Error (MME) estimation, is based on an
optimality criterion which does not require estimation of the estimate error statistics, Eqgs. (3)-(4).

In the remainder of this paper, a summary of the method is given, followed by several application
examples.

3.0 The Covariance Constraint Optimality Criterion

In the MME, a novel optimality criterion is used. The probability distribution of the state
estimate error is not estimated. Instead, the optimal state trajectory estimate is determined on
the basis of the assumption that the measurement-minus-estimate error covariance matrix must
match the measurement-minus-truth error covariance matrix. This condition is referred to as the
“covariance constraint”. The covariance constraint is defined mathematically by requiring the
following approximation to be satisfied:

{[g(tj) ~ g(&(t;),t5) i (ts) — g(z(m,tj)JT} ~ B (5)

Thus, the estimated measurements g(i(tj),tj) are required to fit the actual measurements j(t;)
with approximately the same error covariance as the actual measurements fit the truth. An algo-
rithm for obtaining the estimates is described shortly.
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The covariance constraint may he evaluated without knowledge of the estimate error statis-
tics. Consequently. there is no need for process noise-like assumptions for the mode] error. In
the next section, an algorithin which produces estimates which satisfy the covariance constraint is
derived, treating model error as an unknown which is estimated along with the states.

The interpretation of the “approximately equal” sign in the covariance constraint may be
adjusted according to the particular application. If the measurements are repeated samples of
the same quantities, as is usual in a filtering problem, then a good approach is to calculate the
covariance of the measurement-minus-estimate residuals using all of the measurements simultane-
ously. Thus, the covariance constraint is averaged over all of the measurements. In problems where
several distinct sets of measurements are repeated, each set may be averaged separately. An exam-
ple is spacecraft navigation, where the measurements may include sets of attitude measurements
and sets of angular velocity measurements. These two sets are normally taken independently and
contain different noise levels, so they should be averaged separately.

4.0 MME Algorithm

If the dynamic model Eq. (1) contains significant error, then its output generally cannot
predict the measurements with enough accuracy to satisfy the covariance constraint. The estimated
measurement set at time ¢ is based on the current state estimate, £(tx), as shown in Eq. (2). The
between-measurement state estimate is based on integration of the system dynamic model. Thus, if
the system dynamic model contains errors, the integration does not yield the correct state estimate,
and the residuals between the estimated and the actual measurements are too large. Consequently,
the model error must be reduced in order to satisfy the covariance constraint. To accomplish this,
a model correction term d(t) is added to the original dynamic model as

z = flz(t),u(t),t] + d(t) (6)

In general, an infinite number of d(¢)’s exist which are capable of correcting the model to satisy the
covariance constraint. The minimum correction is sought, thereby providing the least adjustment
to the original model. Accordingly, the following cost functional is minimized with respect to d(t):

7= Y {late) - 9(elt:),) TRy 3665) - 9(ale5).29)

* / Y yWd(rydr (7)

where W is a k X k weight matrix chosen to satisfy the covariance constraint as described shortly.
The functional J in Eq. (7) is the sum of two penalty terms, whose relative weighting is controlled
by W. If W is near zero, then the integral term is nearly zero. Consequently, the allowable
d(t) is virtually unlimited and thus the model is corrected until the measurements are predicted
almost exactly (i.e., the summation term goes to zero). However, this is only appropriate when the
measurements are perfect. If the measurements are noisy, then the covariance constraint implies
that the summation term should not be zero. The weight matrix, W, is chosen such that the
covariance constraint is satisfied, allowing just enough correction d(t). Generally, determination of
W requires a search procedure. However, unlike the tuning of a filter, which is essentially artistic,
W is specified by satisfaction of the covariance constraint.

In Figure (1), the concept of the covariance constraint is demonstrated for a one-dimensional
(n=1) system. Figure (1a) shows the ratio of the left-hand side of Eq. (5) to the right-hand
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Figure 1. Choosing W to satisfy the covariance constraint leads to the optimal state
estimate.

side, plotted versus W. As the weight is decreased, the corrected model predicts the actual
measurements more closely as shown in the figure. In Figure (1b), the estimate variance is plotted

versus W. The covariance constraint implies that the optimal estimate occurs when the covariance
constraint is satisfied.

An algorithm for the minimization of J in Eq. (7) follows directly from a modification (e.g.,
Geering®) of the so-called Pontryagin’s necessary conditions (e.g., Rozonoer’). For a given W, the

minimization of J in Eq. (7) with respect to d(t) leads to the two-point boundary value problem
(TPBVP) summarized as:

& = fla(t),u(t), 1 + d(t) (6)
a T
A= - (a—i> A (8)
T
=W [g—ﬂ A (9)



z(to) = specified, or Aty ) =20 (10)

A(t]) = Ae7 ) + 28] R [5(t;) — g(&(25),5)] (11)
z(ty) = specified, or A(t}*) =0 (12)
where
H = %
oz 2(t5).t5

This TPBVP contains jump discontinuities in the costates at each measurement time where the
predicted measurement does not exactly match the actual measurement. The size of the jump
is proportional to the measurement residual E(tj) - g(g‘:_(tj),tj)], which, via the covariance con-
straint, is proportional to the measurement noise. From Eq. (9), these costate jumps lead to
jumps in the estimated model error. Thus, for noisy measurements, the model error estimates are
jump discontinuous proportional to the measurement residuals. Note that this is identical to a
filter except that in a filter, the jumps are in the state estimates. The MME state estimates are
continuous.

The algorithm Eqs. (6)-(12) exhibits several desirable features of both batch and sequential
estimation techniques. The state estimate is obtained by processing all of the available measure-
ments, much like a batch estimator such as least squares. Thus, the estimate is optimized in a global
sense. In addition, the state estimate is continuous, eliminating the jump discontinuities present
in filter estimates. For many physical systems, jump discontinuities in the states are not possible;
thus, jump discontinuities in the filter state estimates must be reconciled in an artful manner. In
addition to the batch algorithm-like advantages, the minumum model error algorithm calculations
are based upon sequential processing of the measurements, which, like the filter algorithms, greatly
reduces the memory requirements and eliminates the need for large matrix manipulations. From
the standpoint of algorithmic calculations, the minimum model error technique shares advantages
of both batch and sequential estimation techniques.

If the assumed model in the MME algorithm is linear, then a multiple shooting technique
may be used to solve the TPBVP described by Eqs. (6)-(12) (Lew and Mook®). This technique
converts the TPBVP into a set of linear algebraic equations which may be solved using any linear
equation solver.

When the covariance constraint has been satisfied, the estimate is considered to have been
optimized. As a byproduct of the solution, the estimates d(¢) of the model error required to
satisfy the optimality criterion are available. The results of the examples clearly indicate that
these terms may provide highly accurate estimates of the actual model errors, leading to potential
improvements in the model.

5.0 Examples

In this section, several example applications are summarized which demonstrate the present
method and explore the accuracy of both the state estimates and the model error estimates obtained
using it. The examples include both linear and nonlinear systems, varying degrees of model error,
varying levels of measurement noise, measurement frequency, and total number of measurements.
Exploitation of the model error estimates is also demonstrated.
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5.1 Simple Example of Minimum Model Error Estimation

To illustrate the application of the minimum model error approach, consider estimation of a
scalar function of time for which noisy measurements are the only information available. No prior
knowledge of the underlying dynamics is assumed. Thus, the system dynamic model equation is

=0 (13)

Using the minimum model error approach, the system model is modified by the addition of a

to-be-determined unmodeled effect as
¢ =0+ d(t) (14)

where d(t) represents the dynamic model error. For simplicity, the measurements are direct mea-
surements of the state itself, and the measurement noise is a zero mean gaussian process with a
variance of o2, given as

(te) =2z(te)+ve s k = 0,...,m (15)

where Z; is the measurement at time tp, zi is the true state at time ty, and v is a zero-mean
gaussian sequence of variance o2. The cost functional to be minimized (see Eq. (7)) is

t

7= = S la(t) - st + / " R (ryWr (16)

k=0 to

where W is the to-be-determined weight on the integral sum-square model error term. The TPBVP
which results from the minimization of J with respect to d(¢) may be summarized as (see Egs. (6)-

(12))

A
= —5w
. A
t=d=-5%
. 3f
A=-722=0

Atg) = A(tF) =0

NE) = MtE) + (8 — 82)

where A is the vector of costates. The boundary conditions indicate that the state is unknown at
to or ty. The algorithm proceeds according to the following steps:

1) Choose W
2) Solve the TPBVP
3) Check the covariance constraint
4) If the covariance constraint is not satisfied, go to step 1

The true state history for this example is taken as z(t) = cos(t). In Fig. 2, a set of 101
simulated measurements spanning the time interval t; = 0 to ¢{; = 10 is shown. The measurements
were simulated by adding a computer-generated gaussian random sequence to the true state as

Zp = cos(t) + v (17)
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Figure 2. Simulated measurements of cos(t) with o = 0.114.
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Figure 3. MME estimates using the Figure (2) measurements with no model. x denotes
measurement, ¢ denotes truth (cos(t)), O denotes MME estimate.

The nominal variance of v, in Fig. 2 is 0.1, although the actual variance depends on the seed
supplied to the random number generator. This variance is 10% of the peak amplitude. Thus, the
average measurement error is approximately 50% of the average amplitude.

In Fig. 3, the minimum model error state estimate is shown along with the measurements
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and the true state history. Note that the state has been reconstructed to an error variance of
.0085, considerably better than the measurement variance even in the total absence of a model.
Note also that the model prediction variance (i.e., constant z = 0) is 0.717.
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Figure 4. MME model error estimates using the Figure (2) measurements with no
model. ¢ denotes true model error (—sin(t)), 0 denotes MME estimate.

In Fig. 4, the model error term is plotted along with the true model error, —sin(t). Although
the model error estimate contains considerable noise, due to the noisy measurements, it is an
accurate representation of the actual model error. Based on an examination of Fig. 4, a user might
easily conclude that the dynamic model error is indeed —sin(t). If the dynamic model is amended
from ¢ = 0 to £ = —sin(t), and the estimation process repeated, the state estimate is virtually
exact and the model error estimate is virtually zero.

5.2 System State Estimation from MME

Several applications examples are now presented for system state estimation using the MME
method. Other examples have also been investigated but are omitted here due to space limitations.

5.2.1 Modal Space State Estimation

In these examples, taken from Mook and Lin® and Lin!?, the state histories of the output
measurements of a system described by a linear sum of system modes are obtained using the MME.
The simulated measurements are created by assuming a truth as a sum of several modes, and then
adding gaussian noise to the truth. The assumed model for the MME estimation is taken as the
first mode in the sum. All of the other modes are ignored in the assumed model. Figures (5) shows
the results from a case with a five mode truth. The one-mode model is plotted along with the
MME estimate and the truth. The model is seen to be very poor, but the estimate is essentially
perfect. The measurement noise is gaussian with ¢ = 0.04, and the measurement interval is 0.1
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Figure 5. One-mode assumed model, five-mode truth, and MME estimate (x).

seconds.

Clearly, the MME is able to recover from a very poor model to produce accurate state
estimates. This result can be very helpful for structural modelers who are uncertain about whether
or not a modal model has been truncated with the correct number of retained modes.

5.2.2 Nonlinear State Estimation

The following example is taken from Mook!!. Consider the single-degree-of-freedom system

modeled by
i +wle = f(2(e), £()) + F(t) (18)

where z and £ are the system states, () is a known external excitation, and f(z(t), Z(t)) contains
terms which may be nonlinear in the states. The external excitation is assumed to be independent
of the states. Eq. (18) may be converted to state-space form as

== (—?»3 é) )+ (F(()t)) * <f($(t(;,i(t)> (19)

where z = {z(t) #(t)}T. A specific example, after Thompson and Stewart!?, is given by
2.56% 4 0.32¢ + = + 0.05z° = 2.5cos(t) (20)

This example exhibits two distinct possible steady-state solutions, depending on the initial con-
ditions. The assuimned model for the MME algorithm is used in two different forms. First, the
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nonlinear system is modeled for the MME as a linear oscillator. Measurements are simulated with
a variety of different noise levels and frequencies. In each case, the MME is able to obtain accurate
state estimates. Results are shown in Figures (6) through (8). In part (a) of each figure, the
measurements are plotted along with the linear model output, thus showing the information given
to the MME method. In part (b) of each figure, the truth, measurements, and MME estimate
are shown. The accuracy of the state estimate is apparent from the figures, even for measurement

[d

frequency less than 4/cycle and total measurements as low as 15 (Figure (7)), and for noise levels

with ¢ equal to 30% of the peak amplitude (Figure (8)).
g
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Figure 6. (a) Nonlinear estimation with 30 noiseless measurements, using assumed
linear oscillator model. (b) Truth, measurements, and MME estimates.
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(2) (b)
Figure 7. (a) Nonlinear estimation with 15 noiseless measurements, using assumed

linear oscillator model. (b) Truth, measurements, and MME estimates.

Second, the assumed model for the MME consisted only of the external forcing, so that no
knowledge of the system is assumed. Results are shown in Figure (9), where the MME estimate
pictured in part (b) is seen to be very accurate despite the very poor model pictured in part (a).
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Figure 8. (a) Nonlinear estimation with 100 noisy measurements, with noise level
approximately 30%. (b) Truth, measurements, and MME estimates.

7
60 _ﬁ
3.5
40 ~
0 - T 1
5 10
20
Meagurements “3.5 4
0 5 A 10
’ Ww ‘q""sJ Time
Time =77

(a) (b)

Figure 9. (a) Nonlinear estimation with 100 noiseless measurements, using no assumed
model. (b) Truth, measurements, and MME estimates.

5.3 System Identification From Model Error Estimates

An area of considerable interest in many engineering disciplines is identification, the process
of obtaining an accurate model of a dynamic process using measured data. State estimation and
identification are most often two separate processes. Some versions of Kalman filters have been
implemented which treat unknown constant parameters in a model as states, so that they are
estimated as part of the state vector. This approach, like most other identification techniques,
requires the user to construct a model of appropriate form and order apriori. The filter then
estimates the constant parameters in the model. However, the filters still assume that any model
error is a gaussian white noise, so this approach usually works well only if the model order and
form are correctly chosen by the user. The MME, by estimating the model error, may be used to
determine the form of the model error before attempting to estimate the parameters.

Several studies have been conducted to investigate the use of the MME as an aid to system
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Figure 10. Armature-controlled motor drives a rotating shaft assembly with inertia
J, damping B, and stiffness k. The motor constants are Kr and K;, and z = {6 6}T.

identification. These results are presented next.

5.3.1 Linear State Space Parameter Identification

The simplest form of model to identify is the linear, time-invariant state-space model.
This is also the most commonly used model form in practice. Some examples of linear system
identification are given in Mook, Liu, and Ho!®, and some results of that study are repeated
here. Two assumed true systems are studied; an armature-controlled motor system driving a
rotating shaft assembly, shown in Figure (10), and a linear, two-degree-of-freedom model nominally
represented by two masses, springs, and dampers, as shown in Figure (11). In Figure (10), the term
Aqy = —-}—B-R—‘J“—*—RK-LKE, which represents damping, is assumed to be unknown and is to be estimated.
In Figure (11),athe three damper constants are to be estimated from the free response. Simulated
measurements are created for both cases by adding gaussian white noise to the truth, and several
cases are presented for varying noise, measurement frequency, and record length. In addition, the
assumed model used for the MME is varied from case to case by altering the assumed values for
the unknown constants.

The parameter estimation is carried out by a least-squares fit of the estimated model error.
Since the model error estimate is continuous except at the measurement times, it may be sampled
at an arbitrary number of points away from the measurements to create an overdetermined system
of algebraic equations in the unknown parameters. Then, a least-squares algorithm is used to
produce the parameter estimates. Results for the system in Figure (10) are shown in Table (1),
and for the system in Figure (11), in Table (2).

5.3.2 Nonlinear System Identification

In section 5.2.2, results are given which demonstrate very accurate state estimation of a
nonlinear system, given poor dynamic models and noisy, sparse data. In this section, identification
results are given for those same examples. More detail is available in Mook!!.

The model error estimates corresponding to Figures (6)-(9) are shown in Figures (12)-
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Figure 11. Mass-spring-damper system, where F is applied force.
Table 1. Parameter estimates for the system in Figure (10).
Meagurement Measurement True Ay, Estimated A,, Error %
Frequency Variance
(meas/1Q sec)
a1 o. -2.4 -0. 4000 .00
41 2. 00018 -0.4 -0.394691 1.33
21 0. 00014 -0.4 -0.395293 1.18
11 0. 00015 -0.4 -02.415468 3.87
41 9. 0045 -0.4 -0. 361586 9.60

(15). Clearly, the model error estimates are dependent on the accuracy and frequency of the
measurements. For more accurate and more frequent measurements, the model error estimates are
smoother and more accurate. However, the accuracy of the model error is not dependent on the

accuracy of the assumed model. This is a very significant result for identification.

In order to identify the nonlinear model from the model error estimates, a parameterized
model of the model error is constructed and then the parameters are estimated using a least-
squares algorithm. For demonstration purposes, the assumed model for identification contained
more terms than the actual model error, including the case when no prior model is assumed for
the MME (Figures (9) and (15)). The least squares fit produced near-zero parameter estimates for
the assumed model error terms which are not in the model, and near-perfect parameter estimates

for the assumed terms which are in the model.
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Table 2. Parameter estimates for the system in Figure (11).

values of c’=s
----------- true guess estimate error
measurementgx ' (%)
Q. 207 3.5
perfect Q. 092 8.0
Q.291 3.0
0.,0.,0Q.
: 2.210 5.0
noiey 2.108 8.0
2. 278 8.0
.2,.1,.3
0. 205 2.5
perfect 2.097 3.0
Q. 286 4.6
.4,.2,.6
2. 208 4.0
noisy Q. 095 5.0
Q.277 7.7

(values are in the order of ¢
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Figure 12. Model error estimation
with 30 noiseless measurements,
using assumed linear model.
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Figure 13. Model error estimation
with 15 noiseless measurements,
using assumed linear model.

5.2.3 Modal Space Realization/Identification

Recently, considerable interest in the identification of modal space models for large flexible
systems has arisen in conjunction with such proposed projects as the space siation. Several methods
which produce accurate modal models from time-domain data have been developed (e.g., Ibrahim
and Mikulcik!4; Rajaram and Junkins'®; Hendricks et al'®; Chen et al!”). The recently developed
Eigensystem Realization Algorithm (Juang and Pappal®) is particularly attractive because it first
determines the model order and then estimates the model parameters. This alleviates a very serious
drawback of most methods, which require that the model order be known apriori. However, Juang
and Pappal!® found that for high noise levels in the measurements, the ERA could not determine

the correct number of modes in the model, an

d the parameter estimates for the model were of low

145



6.5 |
6.5 “— 5
Actual
3.25- 3.25
o m 0
0 V1 T !
' W (] .2l° ! 30 > °
-3.254 {g.t. -3.25 7
-6.57. Time 6.5 - Tine
Figure 14. Model error estimation Figure 15. Model error estimation
with 100 noisy measurements, with 100 noiseless measurements,
using assumed linear model. using no assumed model.
Original Measurements
v
'———%@riginal ERA Algorithgl
¥
[ Model ]
Sampled
| MME Algorithm |
L™ State Estimates _ Je—

Figure 16. Algorithm flowchart for modal identification.
accuracy.

In Mook and Lew??, the MME method is used in conjunction with the ERA to produce
an algorithm which is significantly less sensitive to noise. The algorithm may be summarized as
(i) apply ERA to the original measurements, (ii) use the ERA-produced model and the original
measurements in the MME to produce state estimates of the measurements, (iii) sample the MME-
produced state estimates to create simulated measurements of higher accuracy than the original
measurements, and (iv) apply ERA to the simulated measurements in order to realize/identify the
correct model. The steps (ii)-(iv) may be repeated, since the MME will produce more accurate
state estimates if a more accurate model is used. Consequently, if the first pass through steps (ii)-
(iv) produces more modes than step (i), a second pass through steps (ii)-(iv) may further improve
the accuracy of the realization /identification. The entire procedure is represented by the flowchart
in Figure (16).

The combined algorithm has been investigated for identification of the modes of a clamped-
clamped beam. The true model is given by

y(t) = 1.0sin(t) + 0.05sin(2.76t) + 0.001sin(5.4t) (21)

Measurement data was created with several noise levels, including ¢ = 0.001, o = 0.003, ¢ = 0.01,
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¢ = 0.05, and o0 = 0.1. Note that the highest noise level corresponds to approximately 10% of
the measurement amplitude, while the lowest noise level is approximately 0.1% of the amplitude.
Moreover, the highest noise level is twice as high as the second, and 100 times as high as the third,
modal amplitudes, while the lowest noise level is equal to the smallest modal amplitude.

Table 3. Singular values from the ERA algorithm.

g =0.1 o =0.05 o =0.01 o =0.003 o =0.001 g =0.0
29.484 29.468 29.458 29.457 29.457 29.456
20.038 20.030 . 20.028 20.028 20.028 20.028
2.166 1.675 1331 1.279 1.264 1.257
1.638 1.199 0.904 0.862 0.851 0.845
1.196 0.593 0.118 0.035 - 0.023 0.026
1.181 0.590 0.113 0.034 0.019 0.022
1.134 0.566 0.110 0.033 0.012 10712
1.124 0.561 0.108 0.031 0.011 10712
1.083 0.541 0.106 0.030 -0.011 1071
1.031 0.516 0.102 0.029 0.010 10-13
0.965 0.483 0.097 0.029 0.010 10713
0.942 0.471 0.094 0.028 0.009 10713

The model order is determined from the singular values of the singular value decomposition
of H(0), where H is the so-called “Hankel matrix”. The model order is determined by the number
of pairs of singular values between which there is a significant drop in magnitude. Table (3) gives
the singular values in order from largest to smallest for each of the five noise levels. It appears that
the model order is one, perhaps two, for & = 0.1, since the singular value pairs beginning with the
second pair are approximately the same magnitude. Consequently, for noise levels of ¢ = 0.1, the
ERA method indicates one mode from the measurements. This seems intuitively reasonable since
the level of noise exceeds the amplitude of modes 2 and 3.

Table 4. Parameter identification from the ERA algorithm.

Mode 1 Mode 2 Mode 3
Noise Frequency Damping | Frequency Damping Frcqﬁency Damping
g =0.1 1.007 -2.25x10~2 2.473 -2.410 11.48 -31.44
o =0.05 1.013 -1.37x1072 2.660 -0.967 12.87 -31.36
o =0.01 1.003 -3.23x107% 2.739 -0.048 26.26 -10.54
o =0.003 1.001 -8.37x10~4 2.753 2.11x1073 26.22 -10.45
o =0.001 1.000 -3.14x107* 2.756 3.18x1073 5.487 -4.27
True 1.000 0 2.760 o 5.400 0

After the model order is determined, the ERA algorithm estimates the modal frequencies
and damping factors. Note that the true frequencies for this example are given in Eq. (21), and the
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true damping factors are 0. The frequencies and damping factors estimated by the ERA method
are given in Table (4), along with the true values. In constructing Table (4), we have chosen the
number of modes as three in all cases, even though this is not clear from the singular values. The
damping and frequency parameters in Table (4) clearly indicate that modes 2 and 3 have not been
discerned from the noisier measurements.

We now proceed to apply the combined ERA/MME algorithm to the same five sets of
measurements used in the ERA algorithm. The assumed dynamic model varies from case to case.
The results from Tables (3) and (4) were used to construct the models which were assumed for
the MME algorithm. Thus, for the three highest noise levels, the MME used only the first mode
identified by the ERA, and for the lower two noise levels, used the first two modes identified by the
ERA. The MME algorithm produced state estimates for the measurement position. These esti-
mates were then sampled at the original measurement times to produce “simulated” measurements
which contain significantly less noise than the original measurements. Finally, the ERA algorithm
is again applied, this time to the simmulated measurements. Although a second application of this
procedure may improve the realization/identification, as illustrated in Figure (1), we present re-
sults for a single pass only. The singular values obtained by ERA processing of the sampled MME
estimates are given in Table (5). These singular values indicate three modes for every noise level.
The parameter identification results are given in Table (6). All three frequencies are identified at
all noise levels. The damping identification for the first two modes is also very good at all noise
levels.

Table 5. Singular values from the ERA/MME algorithm.

o =0.1 o =0.05 o =0.01 o =0.003 a =0.001 o =0.0
29.613 29.496 29.461 29.460 29.456 29.456
20.094 20.048 20.039 20.030 20.028 20.028
0.960 1.091 1.168 1.2790 1.264 1.257
0.706 0.760 0.788 0.8610 0.851 0.845
0.234 0.175 . 0.052 0.0085 0.0154 0.026
0.209 0.160 0.046 0.0074 0.0125 0.022
0.106 0.078 0.024 0.0045 0.0031 10-12
0.075 0.058 0.021 0.0031 0.0025 10-12
0.073 0.057 0.021 0.0023 0.0020 10713
0.072 0.056 0.020 0.0014 0.0014 10713
0.069 0.055 0.020 0.0013 0.0013 10-13
0.066 0.050 0.017 0.0012 0.0012 10~13

The results presented in Tables (5) and (6) indicate that the combined algorithm is capable
of identifying modes with amplitudes as low as 1% of the noise. In each case, we have assumed
the minimum model identified by the first pass of the ERA. Thus, for example, at ¢ = 0.1, which
is twice the amplitude of mode 2 and 100 times the amplitude of mode 3, the ERA algorithm
identifies a single mode. Using only this one-mode model as input to the MME, the combined
algorithm is still able to determine that the true model order is three, and give good accuracy in
the parameter estimates.
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Table 6. Parameter identification from the ERA/MME algorithm.

Mode 1 Mode 2 Mode 3
Noise Frequency Damping Frequency Damping IFrequency Damping
o =0.1 0.996 1.44x1073 2.910 -4.09x1072 5.408 -0.408
o =0.05 0.998 4.14x10~* 2.827 -7.97x107? 5.517 -0.554
o =0.01 0.999 -7.18x10°3 2.768 2.22x10°3 5.678 -0.766
o =0.003 1.000 -4.30x1075 2.766 -1.62x1073 5.589 . -0.142
o =0.001 1.000 -4.61x1075 2.763 2.00x10~* 5.397 0.044
True 1.000 0 2.760 0 5.400 0

5.4 Sample Comparison With Extended Kalman Filter-Smoother

To illustrate the potential advantages of the model error terms in the MME compared with
process noise in filters, consider the following nonlinear problem. The truth is given by the equation

z +t?
P = — 22
e 20+t ( )

For illustration, the assumed model for the estimation algorithms is

& =0 (23)
The measurements are perfect measurements of z. The MME is applied to this problem, and,
for comparison, an extended Kalman filter-smoother is also used. The EKFS is modeled after
the well-known Rauch-Tung-Streibel?! filter-smoother, extended for the nonlinear problem. Since
the assumed model is zero, the EKFS estimate must be constant between the measurements. The
results of the two estimation approaches are shown in Figure (17). The model correction capability
of the MME enables it to produce state estimates using a corrected version of the original model,
so that the MME is not constant between measurements. The advantage of this approach is clear

in Figure (17). Even though the measurements are perfect, the EKFS estimates between the
measurements are poor.

Summary and Conclusions

In this paper, a new method for optimal post-experiment estimation has been described
and its application demonstrated by numerous examples. The method is formulated to account
for model error in a much more general and rigorous fashion than the process noise assumptions
of typical filter algorithms. The state estimates are continuous and based on global measurement
fits, compared with filter estimates which are discrete and based on local measurement fits. The
MME method may give vastly improved state estimates when compared with filters for dynamic
problems with significant model error, especially if the measurements are sparse and/or noisy.

In the MME, model error is treated as an unknown and estimated along with the states.
The estimated model error is automatically corrected in the original model in order to obtain the
state estimates. For poorly modeled systems, this produces two significant benefits. First, the state
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Figure 17. Comparison of the MME with an extended Kalman filter-smoother in the
absence of a model. The EKFS estimate must be constant between measurements,
but the model correction in the MME shows clear advantages.

estimates are based on a corrected model (unlike filters), and second, the model error estimates
are available to aid in identification of an accurate model for subsequent use.

Examples are given which demonstrate state estimation and exploitation of the model error
estimates for both system identification and external force identification. The MME method shows
considerable promise for use in numerous post-experiment estimation and identification problems,
and should be considered for any application in which significant model error is suspected.
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COMPUTATION OF ORBITS USING TOTAL ENERGY

1.0 SUMMARY

The computation of orbits can be done more efficiently by the use of any of several
new formulations (Reference 1, 2, 3, 4, 5) of the perturbed two body problem which
consider the total energy of the orbital system as one of the dependent variables. The
total energy is the osculating two body energy plus the potential energy due to
perturbing masses. The use of the total energy as the dependent variable instead of
the two body energy is a relatively new idea (Reference 1). The advantage of using
total energy arises from the fact that the more perturbing potential energy that is
accounted for in the total energy variable, the more nearly constant is the total
energy. In fact, except for dissipative forces such as drag, the only reason for the
total energy not being constant is the rotation or revolution of the perturbing mass.
This near constancy of the total energy has the effect of inhibiting error growth
during numerical solution (Reference 1). This paper will present the results of an
application of total energy formulation (Reference 2) to the problem of the precise
computation of orbits.

2.0 INTRODUCTION

The differential equation of motion of the perturbed two-body problem can be
expressed as,

£+L£=E=E——QX 1)
r3 ar

where r is the position vector of one of the bodies relative to the other. The perturba-
tions, those derivable from a potential 3V/dr, as well as other forces P, are included in
the total perturbation F. .

The total energy element formulations (References 1, 2, 3, 4, 5) of the perturbed two-
body problem are developed such that V/dt is used as well as 3V/ar. The perturba-
tions are split into those derivable from a potential and those which are included in
the perturbation P. The perturbation P normally includes non-conservative pertur-
bations, but it can also include perturbations derivable from a potential when
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convenient. For the total energy formulations, the right-hand sides of all differential
equations, except that for the total energy, include the perturbation factors P and
aV/ar. The total energy differential equation has the form

h=r.P+ v (2)
at

where h is the total energy,

2 v (3)

r

I~ o

h:—l—zo
2

Equation (2) is derived by taking the time derivative of equation (3) and sub-

stituting equation (1) into this result to eliminate r. Note that this differential

equation includes the perturbations P and 4V/at, but does not include aV/ar.

There are three options available in the total energy formulations depending upon
the way in which the perturbations derivable from a potential are used in the
differential equations. These options are categorized as follows:

(A) The entire perturbing potential is considered with its effect including 6V/or and
aV/et. This is the option which is developed and discussed in this paper.

(B) The perturbing potential can be portioned, including some of the perturbation
in 8V/3r and some in P. This has been the approach most often used when the
geopotential is the perturbation. The zonal terms have been included in 4V/dr,
while the explicitly time dependent terms (the tesseral and sectorial terms)
have been included in P. This approach has been used in order to avoid the
computation of 3V/3t. The potential used is that of the zonal terms only.

(C) The perturbing potential is not considered at all. The 3V/dr are included in the
perturbation P. The potential is set to zero.
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It must be emphasized that all three options are correct. The advantage that any of
the options has over the others is numerical accuracy and speed in computation. The
advantage of option (B) over option (C) in accuracy and speed is considerable and is
discussed at length in References 1, 2, and 4.*

In order to properly implement the differential equation (2) for the total energy as
discussed in option (A), the partial derivative 3V/3t must be computed. This report
will derive a simple formula for this computation. This formula will be developed for
the general case of any perturbation derivable from a potential. Then the particular
case of a geopotential perturbation acting on an Earth satellite will be used as an
example to show the advantage of using 3V/at in the computation.

3.0 DEVELOPMENT OF 4V/at

Let r be the position vector in an inertial system and let rg be the same position
vector in a system rotating with angular velocity w with respect to the inertial
system. Then,

r=rg (4)

The velocity vectors are related by,

r=rc+ WXIg (5)

In the inertial system, the potential function is expressed as an explicit function of
time,

V = V(r,t) (6)

* For these formulations a slightly different energy parameter a,, where

h = —2q,,is used and a new independent variable called fictitious time is
introduced. With these changes, equation (2) becomes
' r 1 [
Qo= — — LV — — Lo B
2 at 2

where ()’ = d()/ds and s is the independent variable such that dt/ds = r.
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having the total derivative

r +

v _ v, [,V
dt ~ ar ot 7)

In a properly chosen rotating system, the same potential function can be expressed

as a function of position only,

V = V(re) (8)

having the total derivative,

& _ v, ©)

= *Ig
dt ar
since in the rotating system the potential has no explicit dependence on time,
aV(rg)/at = 0.

Using equations (4) and (5), equation (7) becomes

dt arg at
Comparing equations (9) and (10), we obtain

_a_\L - - ﬂ.gxg(; (11)

ot drg
Note that to this point, we have not considered any particular potential function.
The result, equation (11), can be applied under proper conditions to the case where V
represents the perturbing geopotential function or to the case of a lunar, solar, or

planetary perturbation on a satellite.

4.0 APPLICATION TO THE GEOPOTENTIAL

We now consider the case of the perturbing geopotential which can be divided into
two parts,

Viz,t) = Va(r) + Vi(z,t) (12)

where ris expressed in an inertial system having one axis normal to the Earth
equatorial plane and the other two orthogonal axes in the equatorial plane. The
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portion of the perturbing geopotential Vz(r) arising from the zonal terms has no
explicit time dependence. The portion of the perturbing geopotential V(r,t) arising
from the sectorial and tesseral terms are explicitly dependent upon time.

For the case of a perturbing geopotential equation (11) can be reduced further.
Define the rotating system Xg, Yg, Zg such that Z¢ is in a direction normal to the
Earth equatorial plane and the X and Y axes lie in the Earth equatorial plane and
are fixed in the Earth. The zonal portion of the perturbing geopotential is

Vz = _ —}rl— » Cn,o (_i;e_)“ P, (Zg/r)
n=2

where,  Cp o are the zonal coefficients
ae is the equatorial radius of the Earth
P, is the n*® degree Legendre polynomial which is a function of Z¢/r.

A

Now, rg =igXg +jeYe + keZe, r =|1_'G l

A~ A A

where ig,jg, kg are unit vectors along the X, Y, Zg axes. The partial
derivative dVz/drg has the form,

avVy
arg

= f,(r,Zg)rg + fy(r.Zg)ke
Note that since @ = wkg,

Vz , wxre=0.
arg
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Thus, the zonal part V of the perturbing geopotential does not contribute to aV/at.
Equation (11) becomes

v VT .« WXTrg. (13)

at arg

Consider the first two options given in Section 2.0 for the formulation of the
differential equation (2) for the total energy.

4.1 Option A - All zonal, sectorial, and tesseral terms of the perturbing
geopotential are included in the potential and hence in the total energy.

Let  V =Vgr) + V()

then -9V _ V2 + _GVr
ar ar ar
also P=0

and from equation (13), we compute aV/at.

Further, since r = rg, we can express equation (2) as

l.lA = i\’— = - aVT e« WXTr, (14)

at az

4.2 Option B - Only the zonal terms of the perturbing geopotential are included in
the potential and hence in the total energy.

Let V = Vz(r)

then K\ = iVz
ar ar
and -9Y _g
at
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The sectorial and tesseral terms are considered to be in the perturbation P,

aVr
ar

P=-—

and the total energy differential equation (2) becomes,

. . aV e
hB = r o E = — ——-T— e I (1 5)
ar

4.3 Comparison of Options A and B:

Both equations (14) and (15) depend directly upon the factor dV/dr, which is a small
term dependlng only upon the sectorial and tesseral terms. But we also observe that

for Option B, hB is proportional to the inertial velocity, r, whereas for Option A, hA
is proportional to the component (w x r) of the inertial velocity which arises from
the rotation of the axes fixed in the Earth.

For near Earth satellite orbits,

r

st |<
(16)

and also

|
In fact, if the Earth were not rotating (o = 0), then h, would be zero. For satellite
orbits which are at large distances from the Earth, the inequality (16) does not
always hold. However, at large distances from the Earth, the perturbing
geopotential is not as significant as perturbations due to the Sun or Moon. The
global region for which the inequality (16) holds is complicated and depends upon the

semi-major axis, the eccentricity, and the true anomaly (or angular position) of the
satellite trajectory.
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For near circular orbits, it can be shown that the ratio
* * ® 1/2
ha/ hg = ?<1 - (Z/r)2>

where n is the mean motion of the satellite and the factor (1 - (Z/ r )2) isalways
less than unity. For orbits within the geosynchronous distance, the inequality
(16) holds since

n>w

For near Earth orbits,

w 1
n 16
and so
hA / hB < i
16

The formulations of the perturbed two-body problem discussed in References 1, 2,
and 4 are in effect perturbed harmonic oscillators having frequencies which are
dependent upon the total energy. The use of the full geopotential as shown in

Option A in the computation of the total energy causes h, to be small. Thus, h, is
nearly constant and the resulting frequency of the perturbed oscillator equations is
nearly constant. Options A and B as well as Option C are also compared in Table I.

5.0 NUMERICAL RESULTS

The numerical effect of using the full geopotential as in Option A is shown in Figure
1. A near circular orbit was propagated for ten days first using Option A and then
using Option B. This computation was done using the KSUR12 total energy formu-
lation (Reference 2) and the RK4(5) variable step numerical integrator (Reference 6).
The geopotential model used was the complete GEM-L2 (Reference 7). The results of
these computations were compared to a reference trajectory computed with very high
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precision as given in Reference 8 and originally provided in Reference 9. Figure 1
shows the RSS of the position vector of Options A and B, with each compared to the
reference.

Option B (using only the zonal part of the geopotential in the total energy) required
an average of 59.4 variable steps per revolution with a maximum error of 25 meters.
Option A (using the full geopotential in the total energy) required an average of 45.2
variable steps per revolution with a maximum error of about 8 meters. The two
options are also compared on Figure 1 using 30 fixed steps per revolution. Option B
showed a rapidly growing error reaching 25 meters after 4 days and still diverging.
Option A reached a maximum error of about 15 meters after 10 days.
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Tablel. Comparison of Options A, B, and C for
perturbing geopotential.

Option A Option B Option C
Perturbing Vz+ Vr Vz 0
Geopotential (V)
Total Energy (h) 1°** p 1°*° qu 1 *° p
equation (3) g BT r +Vz+ Vp 5 E-E-——E—+Vz —2—3.2.. —
aVv av
Perturbation ( ) 3Vz + éVr z 0
or ar ar ar
aVr aVy aVr
Perturbation (P) 0 - - +
ar ar ar
. . aV . .
Derivative of _ _ T . @xr _ aVr - _ avy . aVp :
total energy (h) ar or ar ar
equation (2)
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ABSTRACT:

The Engineering Orbit Analysis Unit at GE Valley Forge had available
to it an Intel Hypercube Parallel Processor. It was decided to
investigate the performance and gain experience of parallel
processors with a multi-satellite orbit determination problem. A
general study was selected in which major blocks of computation for
the multi-satellite orbit computations would be used as units to be
assigned to the various processors on the Hypercube. Problems
encountered or successes achieved in addressing the orbit
determination problem would be more likely to be transferable to
other parallel processors.

Our prime objective was to study the algorithm to allow procesting
of observations later in time than those employed in the state
update. We would exploit our expertise in ephemeris determination
in addressing these problems and use the facility to bring a realism
to the study which would highlight the problems which may not
otherwise be anticipated. Our secondary objectives were to gain
experience of a non-trivial problem in a parallel processor
environment, explore the necessary interplay of serial and parallel
sections of the algorithm in terms of timing studies, to explore the
granularity (coarse vs. fine grain) to discover the granularity
limit above which there would be a risk of starvation where the
majority of nodes would be idle or under the limit where the
overhead associated with splitting the problem may require more work
and communication time than is useful. We could also see the pros
and cons of local versus shared memory.

Traditional algorithms for filtering and smoothing within the orbit
determination problem have been sequential in nature. Real time
filter algorithms imposes constraints on the implementation of the
problem on any parallel computer. The computations preceding the
state update are extensive and can be solved by small vector
processor(s). The computations, arrays and execution time of the
update are all extensive, and the third component of concern would
be the algorithmic bottleneck which occurs in the updating of the
parameters of the state when process noise is used to represent
unmodeled errors.
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A MULTI-SATELLITE ORBIT DETERMINATION PROBLEM
IN A PARALLEL PROCESSING ENVIRONMENT

M. S. Deakyne and R. J. Anderle

INTRODUCTION:

The Orbit Determination Algorithm is a computational intensive
problem which can be investigated in terms of increased efficiency
with vector, pipeline, and parallel processors. As described below,
the approach most intimately connected with the physics of the
problem is parallel processing. In 1987, our objective was to
decide if parallel processors could be used effectively to determine
the orbits of satellites and use the Hypercube to bring a realism to
the study which would highlight problems which may not otherwise be
anticipated.

The first basic challenges were to become familiar with the many
intricate details of the computer architecture and operating system
and then to transfer the structure of the algorithm onto the machine
architecture of the Hypercube. The complexity and high
computational demands of the Orbit Determination Algorithm lent
itself to be first logically decomposed into relatively big,
computationally independent units. These units would be used as the
major blocks of computation assigned to the various processors on
the Hypercube. At this stage, we were gaining experience of the
Orbit Determination problem in a parallel computing environment. We
were discovering the extent of the parallelism within the existing
traditional algorithm.

Our next challenge and our prime objective was to study the
algorithm to allow processing of observations later in time than
those employed in the state update - 'Look Ahead Techniques'. In
this stage, we were trying to invent a new piece to the filter
algorithm, fundamentally parallel in nature to solve our problem.
Problems encountered and successes achieved on the algorithmic level
would be more likely to be transferrable to other parallel
processors.

THE ALGORITHM:

Traditional algorithms for filtering and smoothing within an Orbit
Determination problem have been sequential in nature. Real time
filter algorithms impose constraints on the implementation of the
problem on any parallel processor. The major segments of an orbit
determination problem are:
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1. The evaluation of the accelerations of the satellites due
to the forces modeled.

2. The numerical integration of these equations of motion.

3. The calculation of the process noise representing unmodeled
forces.

4, The calculation of the residuals between the models and the
observation.

5. The update of the parameter estimates and the covariance of
the estimates.

The update is referred to as filtering when the current time
estimates of the parameters are made based on observations prior to
that time. Smoothing is when the parameter estimates at a given
time are based on observations made after, as well as before, the
given time.

The computations preceding the state update are extensive and can
be solved by small vector processors. The computations, arrays, and
execution time of the update are extensive and can be addressed by
vector and/or pipeline processors. The third major area of concern
is the algorithmic bottleneck which occurs in the updating of the
parameters of the state when process noise is used to represent
unmodeled errors.

Within an orbit determination process, using an extended Kalman
filter, one must integrate the equations of motion and perturbation
equations for all satellites and then compute the process noise
before a time update of the covariance can be computed. The
residual is found before the Gain is computed, and the measurement
update must await for all of the above before its calculation can be
performed. Then onto the next measurement. With a single
satellite, the force and integration can be done in parallel and the
different process noise contributions (i.e. drag, gravity, solar
radiation pressure, and clocks) can be done in parallel,
independently of each other. With a multi-satellite configuration,
the parallelism can be increased by doing all of the above for each
satellite in parallel. In the mode of the extended Kalman filter,
the algorithmic bottleneck is the measurement update of the state
and covariance. The update works in isolation.

APPLYING THE ALGORITHM TQ THE MACHINE:

The Hypercube machine is a loosely coupled 32 node multi-processor
connected together with a binary n-cube network. Each node had its
own sizeable memory with no shared memory and no global
synchronization with the host. Communication was achieved by
message passing and the computation was data driven.
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For a first artack to the parallelism within the orbit determination
problem, the Hypercube was a good match to the Orbit Determination
problem since the algorithm could be decomposed naturally into
logically large and separate independent sub-algorithms. However,
the Orbit Determination problem sub-algorithms were diverse in terms
of requiring unsynchronized communicating with other pieces of the
algorithm which put a challenge on balancing the load and
interprocessor communication. Because of the amount of data
exchanged, the lack of shared memory was felt as message passing
became more and more cumbersome and stilted. And we had no
advantage with the Hypercube in terms of dealing with the intensive
computational aspect of our problem. We came to believe that the
ideal machine would be a coarse grain machine which would allow the
underlying concepts of the algorithm to be expressed via the
division of the nodes, implementation of the vector package within
each node and more efficient mode of communication among the nodes.

However, given our problem and Hypercube facility, we proceeded.

The total problem was broken into coarse large sub-problems divided
logically along physical concept boundaries. Chunks of code, each
dealing with a physical concept, had been then extracted from
various sources of standard sequential filter software. Each
sub-problem was assigned to a separate process and placed on a
separate node. The solution of each node had to be exchanged among
the different nodes as the algorithm proceeded. Message passing was
a point to point communication path. If there were no direct
communication paths between the nodes, the message was routed by
intermediate nodes. To handle these messages, a message-delivery
scheme was written - the node executive -~ and was placed on each
node as the control center of the flow of data and to coordinate the
various node processors.

PRELIMINARY RESULTS:

We achieved a cycling program and began to immediately output timing
data. Timing information was difficult to interpret since all the
clocks were independent from each other. Intervals of tire,
concerning wait time, calculation time, and communication time, were
output. Reconstructing relative time was difficult. However, from
our preliminary results, we found at the end of 1986 an unexplained
difference in total run time on the host computer and the overall
wait time on each of the nodes. Also, we found that each of the
nodes was spending an unacceptable amount of time waiting for
information. Placing a synchronization handshake between nodes and
the controiler did not decrease the difficulty because no message
could be broadcast simultaneously and the handshake introduced
additional pauses.
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During all the work of 1986, the Hypercube machine was physically
separated from the group of engineers (i.e. We and the machine were
in two different rooms). In 1987, the engineers and the machine
were placed in the same room and we could run our program and watch
the interplay of the nodes via blinking lights. (Each node on the
Hypercube had two lights. When the red light was on, the node was
waiting for data; When the green light was on, it was in its
calculation mode.) Only then, by viewing these lights did we
realize our problems and constraints of implementing this
non-trivial problem into the parallel environment. One of our
objectives was to explore the algorithm in terms of timing studies.
However, by merely observing the lights during an execution of our
software, we found that the serial sections of the algorithm were
completely dominating the time over the parallel sections. In fact,
it was so dominating that it masked completely any saving of time in
our different implementations in the parallel sections. Not only
was this discovered but also several sections we thought we
implemented in a parallel mode were being executed in a sequential
mode.

These blinking lights also emphasized the newness and difference of
the parallel environment. As we watched the interplay of lights and
correlated them to the running sections of the algorithm, we
realized that to think of a certain number of processors performing
the same task in the same time interval was easy to grasp. But to
think and be logically able to handle the different tasks in
parallel requiring different intervals of time for calculation and
communication and then to tie them together in an efficient parallel
mode without reverting to standard inefficient modes of sequential
thinking was a challenge.

At this point, we scanned the literature in terms of parallel
software techniques and re-visited the existing software package on
the Hypercube. Our main objectives now were to explore the
necessary interplay of serial and parallel sections of the algorithm
in terms of the timing studies, to explore the granularity .(coarse
vs. fine), and to explore the granularity limit above which there
would he a risk of starvation where the majority of nodes would be
idle or under the limit where the overhead associated with splitting
the problem may require more work and communication time than is
useful. We were also exploring the pros and cons of local memory
versus shared memory.

Implementing changes into existing software and trying to debug the
software was horrific. Unless the debug information messages were
written to specifically isolate only certain nodes and certain
processes, the person would receive a torrent of messages from all
the nodes and the information would be lost in the deluge. Al1l
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operations on the multiple processors would not necessarily occur in
precisely the same order from execution to execution and would not
even be time ordered within the same execution. All debug messages
affected the timing of the processes and had to be commented out for
timing studies. Often the program would cycle with the debug.
messages in the system only to crash when the messages were

removed. Debugging had to be done in a fine grain piecemeal fashion
with the messages being highly restrictive to certain nodes and
certain processes.

FINAL RESULTS OF THE HYPERCUBE STUDY:

Over the course of the study, we were able to decrease the original
run time of the overall execution time by a factor of eight and we
did find a proportionate reduction in execution time with the
increasing number of nodes employed in the problem. See Table 1 and
Table 2 for a summary of the Four Test Cases in terms of calculation
time and wait times for 1986 and 1987, respectively. See Table 3
for a Summary of overall run time for the Four Test Cases. See the
Appendix for information and explanation of the different Test Cases
and a summary of the 1986 Results.

At this stage of experience and output, we were able to finally hone
into the new algorithmic aspects of our study. We defined four
different 'Look Ahead Techniques' to attack directly the algorithmic
bottleneck of the update. See Table 4.

As we began to implement these 'Look Ahead Techniques', we
continually bumped up against the machine architecture in terms of
memory allocation on the nodes, message passing, and the demands of
load balancing and inter-processor communication. To preserve the
generality of our study, we scanned the literature and established
contacts with Corporate Research Development Labs (CRD). Our
evolving approach was to bring together the estimation expertise,
the experience of the users in the parallel environment, and the
architectural expertise and computing resources of the
laboratories. 1If this approach was followed, it would make it
possible to review the real-time speed and numerical performance of
the orbit determination package in terms of the implementation,
independent of the particular machine architecture, while
maintaining the correct view on the algorithmic level.

Qur objective now was to define a benchmark orbit determinatiomn
problem to use to evaluate and demonstrate new improvements to the
algorithm using various mapping architectures of existing parallel
computers. We developed and wrote a sequential orbit determination
package which contained the same realistic models of the satellite
dynamics, gravity, drag, solar radiation, GPS, and ground clock
noise contained in the Hypercube program. '
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CONCLUSIONS:

The test results finally showed an improvement in efficiency of
ephemeris computations with an increase in the number of nodes
utilized. Experimentation and experience caused us to stop our
implementation of the 'Look Ahead Techniques' on the Hypercube and
re~direct the IR&D effort to a broader baseline. The Hypercube
machine was a viable necessary tool to gain experience in parallel
processing and bring the realism to the study. However, the
Hypercube type of machine architecture, which we used in this study,
is not the best one which matches the structure of the orbit
determination problem in terms of increased efficiency. (New
Upgrades to the Hypercube have been noted in the literature which
eases message passing.) But the Orbit Determination problem is
still a viable problem for parallel processing.

Our experience should be expanded to machines such as the Warp II,
Cray, the Butterfly, and the Connection Machine to determine the
efficiency of the implementation with the focus on the measurement
update.

The project should be conducted with parallel support from M&DSO and
CRD. The achievable throughput, cost, and reliability of large
scale filters in a parallel environment is a very important and
known next step to accomplish,
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TABLE 3

EPHEMERIS PROCESSING IN PARALLEL PROCESSORS
IR&D STATUS REVIEW

RESULTS OF EXECUTION TIME

- PROPORTIONATE REDUCTION IN EXECUTION TIME WITH
INCREASING NUMBER OF NODES EXPECTED

NUMBER OF NODES

UTILIZED IN TEST CASE 21 8 5 2

RUN TIME (JAN 1987) 425 408 422 503
(SEC)

RUN TIME (JUNE 1987) 37 33 49 94
(SEC)
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TABLE 4

EPHEMERIS PROCESSING IN PARALLEL PROCESSORS

IR&D STATUS REVIEW

LOOK AHEAD TECHNIQUES

METHOD 1 (PRESENTLY EMPLOYED)

o]

METHOD 2

o

METHOD 3
o

0
o

METHOD 4

O 0 O0Oo

MAINTAIN STATES AT SAME EPOCH BY RESTARTING
INTEGRATION OF ALL SATELLITES AT THE TIME OF
OBSERVATION OF ANY SATELLITE

SOLUTION EXACT BUT ALL SATELLITE INTEGRATIONS ARE
STALLED FOR UPDATE CALCULATION

ALLOW STATES OF DIFFERENT SATELLITES TO HAVE DIFFERENT
EPOCHS FOR THE TIME OF UPDATE

RESTART OF INTEGRATION ONLY AT RESPECTIVE OBSERVATION
TIMES

INTEGRATION FOR EACH SATELLITE MUST AWAIT ITS OWN
UPDATE

NET RESULT MAY BE APPROXIMATE DUE TO PROCESS NOISE
CORRELATIONS

FOR TRAJECTORY/COVARIANCE OUTPUT, RESTARTS ARE
NECESSARY DURING LONG OBSERVATION GAPS FOR ANY GIVEN
SATELLITE

BATCH SEQUENTIAL

SPECIFIED BATCH LENGTH, SAME EPOCH FOR ALL SATELLITES
RESTART AT OBSERVATION TIMES ONLY IF UPDATE PARAMETERS
EXCEED PROPOGATED STATE BY SOME TOLERANCE

BATCH SEQUENTIAL

MINIMUM AND MAXIMUM BATCH LENGTH SPECIFIED
DIFFERENT EPOCHS FOR DIFFERENT SATELLITES
MAXIMUM BATCH LENGTH DEFINED AS INTERVAL BETWEEN
OBSERVATIONS OF RESPECTIVE SATELLITES
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APPENDIX

ALGORITHM TASKS

EPHEMERIS

OBJECTIVE

The objective of the hypercube ephemeris task was to decide if
parallel processors can be used effectively to determine the orbits
of satellites.

APPROACH

Within a satellite ephemeris computer program, there are many
vector-type operations that could be performed in parallel and,
thus, improve the throughput of the computations. However,
exploiting this capability of parallel or vector processors would
require a large number of processors; furthermore, the results of
such a study would be highly dependent on the type of computers
used. A general study was selected in which the major blocks of
computation for multisatellite orbit computations were used as the
units to be assigned to various processors. A multisatellite orbit
solution including observations between satellites is a challenging
problem for parallel processors, since there is a natural bottleneck
that occurs in the updating of the parameters of such a solution
when process noise is used to represent unmodeled errors. Problems
encountered or successes achieved in addressing this problem are
more likely to be transferrable to other computers.

TEST CONDITIONS

A typical multisatellite test problem was selected which consisted
of the configuration shown in Table 1. The program that was
designed has the capability of processing the above observations for
3 primary satellites, such as Landsat or Topex, 3 relay satellites,
and 18 GPS satellites. The number of Doppler stations can be
greater than the 15 selected for the test, but provision was not
made for time-overlapping Doppler observations since it would not
have contributed to the test objectives. The process noise models
account for the statistical effects of atmospheric drag variations
and unmodeled errors in the earth's gravity field, computed effects
of solar radiation forces, and clocks aboard the primary satellites
that are used to make measurements of range to the GPS satellites or
Doppler effects seen at ground stations.

The processor modules shown in Table 2 consist of:

1. An executive for each node
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2. Integrator-force assignable to nodes for any groupings of
satellites

3. Residual computation assignable to nodes for any groupings
of observation types and satellites

4, Process noise for gravity assignable to nodes for any
grouping of host vehicles and relay satellites

5. Process noise for drag assignable to nodes for any grouping
of host vehicles

6. Process noise for solar radiation pressure assignable to
nodes for any groupings of relay satellites

7. Process noise for clocks assignable to nodes for any
groupings of host satellites

8. A single time and observation update module

The controller receives input assigning the processes to nodes,
initializes the computations, and sends extended observation
messages to the appropriate nodes where the executive (on the basis
of the codes contained in the observation record) determines which
processes are to be performed on the respective node and where to
send the results. As the current solution is performed, the update
module sends it to the controller for output, and this signals
readiness for another observation. An IBM 3090 program supports the
system by generating simulated data which is down-loaded to the
hypercube controller.

DESCRIPTION OF TEST CASES

The orbit computations were performed for 15 simulated observations
using the node assignments shown in Tables 3 and 4. All the
processes were loaded on each node except for Update which was
loaded on node 21 with no other processes (excluding the node
executive which was common to all nodes). Test 4 node assignments
were selected to approach the computer run time expected for
sequential processing. Tests 2 and 3 provide measures of gain to be
achieved in parallel processing. Of course, in actual
implementation, the processes would be decomposed into smaller
elements in order to make maximum utilization of available nodes.
Test 1 was designed to determine the approximate computation time
required for each process. Although the length of time spent in the
computation portion of each process was recorded, it included time
spent during the 50-msecond samplings of other processors. Although
the exits to the node executive were included in the process times
obtained in Test 1, the results were as close to the actual
computation time as could be obtained. Refer to Table 5 for memory
requirements for processors.
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TABLE 1

" TEST CONDITIONS

Satellites:
Landsat Mapping Satellite
Topex Altimetry Satellite

Tracking and Data Relay Satellite System (TDRSS) -1
Relay Satellite

TDRSS -2 Relay Satellite

6 Global Positioning System (GPS) Satellites (Orbits
Assumed to be Known)

Observations:

Ground Doppler Observations of Landsat and Topex

Range Observations From a Ground Site to TDRSS
Satellites

Range-Sum Observations Through Relays to Landsat and
Topex

Range Observations From Topex and Landsat to GPS

Process Noise:

Gravity for Landsat, Topex and Relays
Drag for Landsat and Topex

Radiation Pressure for Relays

GPS Receiver Clocks on Landsat and Topex

Doppler Beacons on Landsat and Topex
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TABLE 3

NODE ASSIGNMENTS - INTEGRATOR/FORCE

Processor Test 1 Test 2 Test Test 4
Integrator/Force
Landsat 1 1 1 7
Topex 2 2 2 7
Relay-1 3 3 3 7
Relay-2 4 4 3 7
GPS-1 5 5 4 7
GPS-2 6 5 4 7
GPS-3 7 6 4 7
GPS-4 8 6 4 7
GPS-5 9 7 4 7
GPS-6 10 7 4 7
Residuals 11 3 21 21
TABLE 4
NODE ASSIGNMENTS -~ PROCESS NOISE
Processor Test 1 Test 2 Test Test 4
Process Noise
Gravity P.N. Landsat 12 1 1 7
Gravity P.N. Topex 13 2 2 7
Gravity P.N. Relay 1 14 3 3 7
Gravity P.N. Relay 2 14 3 3 7
Drag Noise Landsat 15 6 3 7
Drag Noise Topex 16 7 4 7
Rad. Noise Relay 1 17 1 1 7
Rad. Noise Relay 2 18 5 2 7
Clock 1 Landsat 19 4 4 7
Clock 1 Topex 19 4 4 7
Clock 2 Landsat 20 2 3 7
Clock 2 Topex 20 2 3 7
Update 21 21 21 21
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TABLE 5
MEMORY REQUIREMENTS FOR PROCESSORS

Process Memory Requirement (Bytes)

IBM 3090 Hypercube
Node Executive N/A 47769
Integrator/Force 175005 42251
Residuals 74688% 3185*
Gravity Noise 67848* 26935
Radiation Noise 72168* 